A New View of Intra-Regular $\mathcal{A \mathcal { G }}$-Groupoids in Terms of Generalized Cubic Ideals

Gulistan, M. ${ }^{1}$, Kadry, S. ${ }^{* 2}$, and Azhar, M. ${ }^{1}$
${ }^{1}$ Department of Mathematics and Statistics, Hazara University, Mansehra, Pakistan
${ }^{2}$ Department of Mathematics and Computer Science, Beirut Arab University, Lebanon
E-mail: s.kadry@bau.edu.lb
*Corresponding author

Received: 11 November 2019
Accepted: 20 June 2020

Abstract

In this paper we characterize the intra-regular $\mathcal{A \mathcal { G }}$-groupoids in terms of generalized cubic set. We show that the concept of $\left(\epsilon_{\Gamma}, \epsilon_{\Gamma} \vee \boldsymbol{q} \boldsymbol{\Delta}\right)$-cubic ideals and of $\left(\epsilon_{\Gamma}, \epsilon_{\Gamma} \vee \boldsymbol{q} \boldsymbol{\Delta}\right)$-cubic interior ideals in an intra-regular $\mathcal{A \mathcal { G }}$-groupoid S with left identity coincides. We additionally demonstrate that an $\mathcal{A} \mathcal{G}$-groupoid S with left identity is intra-regular if and only if $\beta_{1} \wedge^{*} \beta_{2}=\beta_{1} \circ^{*} \beta_{2}$ for all $\left(\epsilon_{\Gamma}, \epsilon_{\Gamma} \vee \boldsymbol{q} \boldsymbol{\Delta}\right)$-cubic quasi ideals $\beta_{1}=\left\langle\widetilde{\Im}_{\beta_{1}}, \hbar_{\beta_{1}}\right\rangle$ and $\beta_{2}=\left\langle\widetilde{\Im}_{\beta_{2}}, \hbar_{\beta_{2}}\right\rangle$ of S.

Keywords: $\mathcal{A} \mathcal{G}$-groupoids; intra-regular $\mathcal{A} \mathcal{G}$-groupoids; cubic sets, generalized sub $\mathcal{A \mathcal { G }}$-groupoids; generalized cubic ideals.

1 Introduction

Zadeh [29] started the idea of fuzzy set in 1972, which is a helpful instrument to deal with uncertain, non correct and vague data. Fuzzy set hypothesis is the augmentation of established set hypothesis. Atanassov [2] has given another speculation of fuzzy set as intuitionistic fuzzy sets and also defined different operations [3]. Jun et al. [8] presented another kind of fuzzy sets called cubic sets. The hypothesis of cubic sets pulled in a few mathematicians. Jun et al. [7] considered the hypothesis of cubic sets in different algebraic structures such as cubic subgroups [5], cubic q-ideals of bci-algebras [6] and ideals of bci algebras in cubic structures [9]. Yaqoob et al. [1] examined a few properties of cubic Γ-hyperideals in left almost Γ-semihypergroups and cubic KUideals of KU-algebras [27]. For more insight concerning cubic sets and their applications we refer the perusers [12, 13]. Riaz [25] discussed certain properties of bipolar fuzzy soft topology and Malik et al. [14,15] discussed G-subsets and g-orbits under the action of the modular group. More detail about decision making can be seen in [24,26]. Murali [16] gave the idea of belongingness of fuzzy point. In [23], the idea of quasi-coincidence of a fuzzy point with a fuzzy set is defined. Recently, Yin and Zhan [28] presented progressively broad types of $(\in, \in \vee q)$-fuzzy filters and define ($\epsilon_{\gamma}, \in_{\gamma} \vee q_{\delta}$)-fuzzy filters and gave some intriguing outcomes with regards to terms of these thoughts. The left almost semigroup contracted as a LA-semigroup (also known as AbelGrassman grouppoids [4]), was first introduced by Kazim and Naseerudin [10]. They summed up some valuable aftereffects of semigroup hypothesis. They presented props on the left of the ternary commutative law $g_{1} g_{2} g_{3}=g_{3} g_{2} g_{1}$, to get another pseudo associative law, that is $\left(g_{1} g_{2}\right) g_{3}=$ $\left(g_{3} g_{2}\right) g_{1}$, and named it as left invertive law. Afterward, Madad et al. [11], Mushtaq and others explored the structure further and added numerous helpful outcomes to the hypothesis of LAsemigroups [21] such as associative LA-semigroups [22], partial ordering and congruences on LAsemigroups [17], On left almost groups [18], m-systems in LA-semigroups [19] and topological structure on LA-semigroups [20].

This article is about the characterizations of Intra-regular $\mathcal{A \mathcal { G }}$-groupoids in terms of Generalized Version of Jun's Cubic Sets. We show that the concept of $\left(\epsilon_{\Gamma}, \epsilon_{\Gamma} \vee \boldsymbol{q} \boldsymbol{\Delta}\right)$-cubic ideals and of $\left(\epsilon_{\Gamma}, \in_{\Gamma} \vee \boldsymbol{q} \boldsymbol{\Delta}\right)$-cubic interior ideals of an intra-regular $\mathcal{A} \mathcal{G}$-groupoid S with left identity coincides. We likewise demonstrate that an $\mathcal{A G}$-groupoid S with left identity is intra-regular if and only if $\beta_{1} \wedge^{*} \beta_{2}=\beta_{1} \circ^{*} \beta_{2}$ for all $\left(\epsilon_{\Gamma}, \epsilon_{\Gamma} \vee \boldsymbol{q} \boldsymbol{\Delta}\right)$-cubic quasi ideals $\beta_{1}=\left\langle\widetilde{\Im}_{\beta_{1}}, \hbar_{\beta_{1}}\right\rangle$ and $\beta_{2}=\left\langle\widetilde{\Im}_{\beta_{2}}, \hbar_{\beta_{2}}\right\rangle$ of S.

2 Preliminaries

A groupoid $(S,$.$) is called \mathcal{A G}$-groupoid if its components hold the left invertive law

$$
\left(g_{4} g_{2}\right) g_{3}=\left(g_{3} g_{2}\right) g_{4}
$$

Every $\mathcal{A} \mathcal{G}$-groupoid fulfill

$$
\left(g_{1} g_{2}\right)\left(g_{3} g_{4}\right)=\left(g_{1} g_{3}\right)\left(g_{2} g_{4}\right),
$$

for all $g_{1}, g_{2}, g_{3}, g_{4} \in S$. If an $\mathcal{A G}$-groupoid contain the left identity, then

$$
\begin{aligned}
g_{1}\left(g_{2} g_{3}\right) & =g_{2}\left(g_{1} g_{3}\right), \\
\left(g_{1} g_{2}\right)\left(g_{3} g_{4}\right) & =\left(g_{4} g_{2}\right)\left(g_{3} g_{1}\right), \\
\left(g_{1} g_{2}\right)\left(g_{3} g_{4}\right) & =\left(g_{4} g_{3}\right)\left(g_{2} g_{1}\right) .
\end{aligned}
$$

An $\mathcal{A G}$-groupoid S with left identity is

$$
S^{2} \subseteq S
$$

An element g_{1} of S is called regular if there exist $l_{1} \in S$ such that $g_{1}=\left(g_{1} l_{1}\right) g_{1}$ and S is called regular, if every element of S is regular. An element g_{1} of S is called intra-regular if there exist $l_{1}, l_{2} \in S$ such that $g_{1}=\left(l_{1} g_{1}^{2}\right) l_{2}$ and S is called intra-regular, if every element of S is intra-regular.

Theorem 2.1. For an $\mathcal{A \mathcal { G }}$-groupoid S with left identity, the following conditions are equivalent.
(i) S is intra-regular.
(ii) $Q_{1} \cap Q_{2}=Q_{1} Q_{2}$ for any quasi ideals Q_{1} and Q_{2} of S.

Theorem 2.2. For an $\mathcal{A G}$-groupoid S with left identity, the accompanying conditions are comparable,
(i) S is intra-regular.
(ii) $R_{4} \cap R_{5} \subseteq R_{4} R_{5}$ for any left ideal R_{4} and right ideal R_{5} of S.

Theorem 2.3. For an $\mathcal{A G}$-groupoid S with left identity, the accompanying conditions are comparable,
(i) S is intra-regular.
(ii) $R_{3} \cap R_{4}=R_{4} R_{3}\left(R_{3} \cap R_{4} \subseteq R_{4} R_{3}\right)$ for any left ideal R_{4} and quasi ideal R_{3} of S.

Theorem 2.4. For an $\mathcal{A G}$-groupoid S with left identity, the following conditions are equivalent.
(i) S is intra-regular.
(ii) $R_{4} \cap R_{3}=\left(R_{4} R_{3}\right) R_{4}$ for any left ideal R_{4} and quasi ideal R_{3} of S.

Theorem 2.5. For an $\mathcal{A G}$-groupoid S with left identity, the accompanying conditions are comparable,
(i) S is intra-regular.
(ii) $R_{2} R_{3} \subseteq R_{2} \cap R_{3}$ for all bi ideal R_{2} and quasi ideal R_{3} of S.

An interval number is $\widetilde{g_{1}}=\left[g_{1}^{-}, g_{1}^{+}\right]$, where $0 \leqslant g_{1}^{-} \leqslant g_{1}^{+} \leqslant 1$. Let $D[0,1]$ denote the family of all closed subintervals of $[0,1]$, i.e.,

$$
D[0,1]=\left\{\widetilde{g_{1}}=\left[g_{1}^{-}, g_{1}^{+}\right]: g_{1}^{-} \leqslant g_{1}^{+}, \text {for } g_{1}^{-}, g_{1}^{+} \in I\right\} .
$$

The operations " $\succeq ", " \preceq ", "=", " r m i n "$ and "rmax" in case of two elements in $D[0,1]$ defined as. If $\widetilde{g_{1}}=\left[g_{1}^{-}, g_{1}^{+}\right]$and $\widetilde{g_{2}}=\left[g_{2}^{-}, g_{2}^{+}\right] \in D[0,1]$. Then,
(i) $\widetilde{g_{1}} \succeq \widetilde{g_{2}}$ if and only if $g_{1}^{-} \geq g_{2}^{-}$and $g_{1}^{+} \geq g_{2}^{+}$,
(ii) $\widetilde{g_{1}} \preceq \widetilde{g_{2}}$ if and only if $g_{1}^{-} \leq g_{2}^{-}$and $g_{1}^{+} \leq g_{2}^{+}$,
(iii) $\widetilde{g_{1}}=\widetilde{g_{2}}$ if and only if $g_{1}^{-}=g_{2}^{-}$and $g_{1}^{+}=g_{2}^{+}$,
(iv) $\operatorname{rmin}\left\{\widetilde{g_{1}}, \widetilde{g_{2}}\right\}=\left[\min \left\{g_{1}^{-}, g_{2}^{-}\right\}, \min \left\{g_{1}^{+}, g_{2}^{+}\right\}\right]$,
(v) $\operatorname{rmax}\left\{\widetilde{g_{1}}, \widetilde{g_{2}}\right\}=\left[\max \left\{g_{1}^{-}, g_{2}^{-}\right\}, \max \left\{g_{1}^{+}, g_{2}^{+}\right\}\right]$.

An interval valued fuzzy set (briefly, IVF-set) $\widetilde{\hbar}_{R_{1}}$ on L is defined as

$$
\widetilde{\hbar}_{R_{1}}=\left\{\left\langle l_{1},\left[\hbar_{R_{1}}^{-}\left(l_{1}\right), \hbar_{R_{1}}^{+}\left(l_{1}\right)\right]\right\rangle: l_{1} \in L\right\},
$$

where $\hbar_{R_{1}}^{-}\left(l_{1}\right) \leqslant \hbar_{R_{1}}^{+}\left(l_{1}\right)$, for all $l_{1} \in L$. Then the ordinary fuzzy sets $\hbar_{R_{1}}^{-}: X \rightarrow[0,1]$ and $\hbar_{R_{1}}^{+}: X \rightarrow[0,1]$ are called a lower fuzzy set and an upper fuzzy set of $\widetilde{\hbar}$, respectively. Let $\widetilde{\hbar}_{R_{1}}\left(l_{1}\right)=$ $\left[\hbar_{R_{1}}^{-}\left(l_{1}\right), \hbar_{R_{1}}^{+}\left(l_{1}\right)\right]$, then,

$$
R_{1}=\left\{\left\langle l_{1}, \widetilde{\hbar}_{R_{1}}\left(l_{1}\right)\right\rangle: l_{1} \in X\right\},
$$

where $\widetilde{\hbar}_{R_{1}}: X \longrightarrow D[0,1]$.

$3\left(\epsilon_{\Gamma}, \in_{\Gamma} \vee q_{\Delta}\right)$-cubic ideals

In this segment we have define the idea of a $\left(\epsilon_{\Gamma}, \epsilon_{\Gamma} \vee \boldsymbol{q} \boldsymbol{\Delta}\right)$-cubic sub $\mathcal{A} \mathcal{G}$-groupoid (resp., ideal, bi-ideal, interior ideal and quasi-ideal) of an $\mathcal{A \mathcal { G }}$-groupoid which is denoted by S with the assistance of cubic point. Here we give some essential outcomes.

Definition 3.1. [8]. A cubic set $\beta_{1}=\left\langle\widetilde{\Im}_{\beta_{1}}, \hbar_{\beta_{1}}\right\rangle$ is of the shape:

$$
\beta_{1}=\left\{\left\langle l_{1}, \widetilde{\Im}_{\beta_{1}}\left(l_{1}\right), \hbar_{\beta_{1}}\left(l_{1}\right)\right\rangle: l_{1} \in L\right\},
$$

where the functions $\widetilde{\Im}_{\beta_{1}}: X \longrightarrow D[0,1]$ and $\hbar_{\beta_{1}}: X \rightarrow[0,1]$.
Definition 3.2. Let $\beta_{1}=\left\langle\widetilde{\Im}_{\beta_{1}}, \hbar_{\beta_{1}}\right\rangle$ and $\beta_{2}=\left\langle\widetilde{\Im}_{\beta_{2}}, \hbar_{\beta_{2}}\right\rangle$ be two cubic sets of S, then $\beta_{1} \cap \beta_{2}=$ $\left\{\left\langle l_{1}, \operatorname{rmin}\left\{\widetilde{\Im}_{\beta_{1}}\left(l_{1}\right), \widetilde{\Im}_{\beta_{2}}\left(l_{1}\right)\right\}, \max \left\{\hbar_{\beta_{1}}\left(l_{1}\right), \hbar_{\beta_{2}}\left(l_{1}\right)\right\}\right\rangle: l_{1} \in S\right\}$,
and $\beta_{1} \circ \beta_{2}=\left\{\left\langle l_{1}, \widetilde{\Im}_{\beta_{1} \circ \beta_{2}}\left(l_{1}\right), \hbar_{\beta_{1} \circ \beta_{2}}\left(l_{1}\right)\right\rangle: l_{1} \in S\right\}$,
where

$$
\begin{aligned}
& \widetilde{\Im}_{\beta_{1} \circ \beta_{2}}\left(l_{1}\right)= \begin{cases}\operatorname{rsup}\left\{\operatorname{rmin}\left\{\widetilde{\Im}_{\beta_{1}}\left(l_{2}\right), \widetilde{\Im}_{\beta_{2}}\left(l_{3}\right)\right\}\right\} & \text { if } l_{1}=l_{2} l_{3} \\
l_{1}=l_{2} l_{3} & \text { otherwise } \\
{[0,0]}\end{cases} \\
& \hbar_{\beta_{1} \circ \beta_{2}}\left(l_{1}\right)= \begin{cases}\inf _{l_{1} l_{2} l_{3}}\left\{\max \left\{\hbar_{\beta_{1}}\left(l_{2}\right), \hbar_{\beta_{2}}\left(l_{3}\right)\right\}\right\} & \text { if } l_{1}=l_{2} l_{3} \\
1 & \text { otherwise. }\end{cases}
\end{aligned}
$$

Definition 3.3. [12]. Let $\widetilde{\alpha} \in D(0,1]$ and $\beta \in[0,1)$ such that $\widetilde{0} \prec \widetilde{\alpha}$ and $\beta<1$, then by cubic point $(C P)$ we mean $l_{1(\widetilde{\alpha}, \beta)}\left(l_{2}\right)=\left\langle l_{1 \widetilde{\alpha}}\left(l_{2}\right), l_{1 \beta}\left(l_{2}\right)\right\rangle$ where

$$
l_{1 \widetilde{\alpha}}\left(l_{2}\right)=\left\{\begin{array}{ll}
\widetilde{\alpha} & \text { if } l_{1}=l_{2} \\
\widetilde{0} & \text { otherwise }
\end{array} \text { and } l_{1 \beta}\left(l_{2}\right)=\left\{\begin{array}{cl}
0 & \text { if } l_{1}=l_{2} \\
1 & \text { otherwise. }
\end{array}\right.\right.
$$

For any cubic set $\beta_{1}=\left\langle\widetilde{\Im}_{\beta_{1}}, \hbar_{\beta_{1}}\right\rangle$ and for a cubic point $l_{1(\widetilde{\alpha}, \beta)}$, with the condition that $[\alpha, \beta]+$ $[\alpha, \beta]=[2 \alpha, 2 \beta]$ such that $2 \beta \leq 1$, we mean
(i) $l_{1(\widetilde{\alpha}, \beta)} \in_{\Gamma} \beta_{1}$ if $\widetilde{\Im}_{\beta_{1}}\left(l_{1}\right) \succeq \widetilde{\alpha} \succ \widetilde{\gamma}_{1}$ and $\hbar_{\beta_{1}}\left(l_{1}\right) \leq \beta<\gamma_{2}$.
(ii) $l_{1(\widetilde{\alpha}, \beta)} q \Delta \beta_{1}$ if $\widetilde{\Im}_{\beta_{1}}\left(l_{1}\right)+\widetilde{\alpha} \succ 2 \widetilde{\delta_{1}}$ and $\hbar_{\beta_{1}}\left(l_{1}\right)+\beta<2 \delta_{2}$.
(iii) $l_{1(\widetilde{\alpha}, \beta)} \in_{\Gamma} \vee q \Delta \beta_{1}$ if $l_{1(\widetilde{\alpha}, \beta)} \in_{\Gamma} \beta_{1}$ or $l_{1(\widetilde{\alpha}, \beta)} q \Delta \beta_{1}$.

Definition 3.4. [12]. Let S be an $\mathcal{A G}$-groupoid. Then the cubic characteristic function

$$
\varkappa_{\Gamma}^{\Delta} \beta_{1}=\left\langle\widetilde{S}_{\varkappa_{\Gamma}^{\Delta} \beta_{1}}, \hbar_{\varkappa_{\Gamma}^{\Delta} \beta_{1}}\right\rangle
$$

of $\beta_{1}=\left\langle\widetilde{\Im}_{\beta_{1}}, \hbar_{\beta_{1}}\right\rangle$ is defined as

$$
\widetilde{\Im}_{\varkappa_{\Gamma}^{\stackrel{\rightharpoonup}{\Gamma}}}\left(l_{1}\right) \succeq\left\{\begin{array}{ll}
\widetilde{\delta}_{1}=[1,1] & \text { if } l_{1} \in \beta_{1} \\
\widetilde{\gamma_{1}}=[0,0] & \text { if } l_{1} \notin \beta_{1}
\end{array} \quad \text { and } \quad \hbar_{\varkappa_{\Gamma} \beta_{1}}\left(l_{1}\right) \leq \begin{cases}\delta_{2}=0 & \text { if } l_{1} \in \beta_{1} \\
\gamma_{2}=1 & \text { if } l_{1} \notin \beta_{1}\end{cases}\right.
$$

where $\widetilde{\delta_{1}}, \widetilde{\gamma_{1}} \in D(0,1]$ such that $\widetilde{\gamma_{1}} \prec \widetilde{\delta_{1}}$, and $\delta_{2}, \gamma_{2} \in[0,1]$ such that $\delta_{2}<\gamma_{2}$.
We define a relation $\sqsubseteq \vee_{q(\Gamma, \Delta)}$ on two cubic sets $\beta_{1}=\left\langle\widetilde{\Im}_{\beta_{1}}, \hbar_{\beta_{1}}\right\rangle$ and $\beta_{2}=\left\langle\widetilde{\Im}_{\beta_{2}}, \hbar_{\beta_{2}}\right\rangle$ in this way, i.e $\beta_{1} \sqsubseteq \vee_{q(\Gamma, \Delta)} \beta_{2}$ if $l_{1(\widetilde{\alpha}, \beta)} \in_{\Gamma} \beta_{1}$ implies that $l_{1(\widetilde{\alpha}, \beta)} \in_{\Gamma} \vee q \Delta \beta_{2}, \forall l_{1} \in S$.
Lemma 3.1. Let $\beta_{1}=\left\langle\widetilde{\Im}_{\beta_{1}}, \hbar_{\beta_{1}}\right\rangle$ and $\beta_{2}=\left\langle\widetilde{\Im}_{\beta_{2}}, \hbar_{\beta_{2}}\right\rangle$ be two cubic sets then $\beta_{1} \sqsubseteq \vee_{q(\Gamma, \Delta)} \beta_{2}$ if and only if

$$
\begin{aligned}
& \operatorname{rmax}\left\{\widetilde{\Im}_{\beta_{2}}\left(g_{1}\right), \widetilde{\gamma}_{1}\right\} \succeq \operatorname{rmin}\left\{\widetilde{\Im}_{\beta_{1}}\left(g_{1}\right), \widetilde{\delta}_{1}\right\} \text { and } \\
& \quad \min \left\{\hbar_{\beta_{2}}\left(g_{1}\right), \gamma_{2}\right\} \leq \max \left\{\hbar_{\beta_{1}}\left(g_{1}\right), \delta_{2}\right\},
\end{aligned}
$$

where $\widetilde{\delta_{1}}, \widetilde{\gamma_{1}} \in D(0,1]$ such that $\widetilde{\gamma_{1}} \prec \widetilde{\delta_{1}}$ and $\delta_{2}, \gamma_{2} \in[0,1]$ such that $\delta_{2}<\gamma_{2}$.

Proof. Same as in [12].
Corollary 3.1. Let $\beta_{1}=\left\langle\widetilde{\Im}_{\beta_{1}}, \hbar_{\beta_{1}}\right\rangle, \beta_{2}=\left\langle\widetilde{\Im}_{\beta_{2}}, \hbar_{\beta_{2}}\right\rangle$ and $\Omega=\left\langle\widetilde{\Im}_{\Omega}, \hbar_{\Omega}\right\rangle$ be cubic sets such that

$$
\beta_{1} \sqsubseteq \vee_{q(\Gamma, \Delta)} \beta_{2} \text { and } \beta_{2} \sqsubseteq \vee_{q(\Gamma, \Delta)} \Omega \text {, }
$$

then $\beta_{1} \sqsubseteq \vee_{q(\Gamma, \Delta)} \Omega$.

Proof. It follows from the Lemma 3.1.
Remark 3.1. The relation $=_{(\Gamma, \Delta)}$ is an equivalence relation on S. Two cubic sets $\beta_{2}=_{(\Gamma, \Delta)} \Omega$ if and only if

$$
\operatorname{rmax}\left\{\operatorname{rmin}\left\{\widetilde{\Im}_{\beta_{2}}\left(l_{1}\right), \widetilde{\delta}_{1}\right\}, \widetilde{\gamma_{1}}\right\}=\operatorname{rmax}\left\{r \min \left\{\widetilde{\Im}_{\Omega}\left(l_{1}\right), \widetilde{\delta}_{1}\right\}, \widetilde{\gamma}_{1}\right\},
$$

and

$$
\min \left\{\max \left\{\hbar_{\beta_{2}}\left(l_{1}\right), \delta_{2}\right\}, \gamma_{2}\right\}=\min \left\{\max \left\{\hbar_{\Omega}\left(l_{1}\right), \delta_{2}\right\}, \gamma_{2}\right\} .
$$

Definition 3.5. A cubic set $\beta_{1}=\left\langle\widetilde{\Im}_{\beta_{1}}, \hbar_{\beta_{1}}\right\rangle$ of S is said to be $\left(\epsilon_{\Gamma}, \in_{\Gamma} \vee \boldsymbol{q} \boldsymbol{\Delta}\right)$-cubic sub $\mathcal{A G}$-groupoid of S if

$$
l_{1\left(\tilde{t_{1}}, s_{1}\right)} \in_{\Gamma} \beta_{1} \text { and } l_{2\left(\tilde{t_{2}}, s_{2}\right)} \in\left(\widetilde{\gamma_{2}}, \gamma_{2}\right),
$$

implies that

$$
\left(l_{1} l_{2}\right)_{\left\langle r \min \left\{\tilde{t_{1}}, \tilde{t_{2}}\right\}, \max \left\{s_{1}, s_{2}\right\}\right\rangle} \in_{\Gamma} \vee q \Delta \beta_{1},
$$

where $\widetilde{\delta_{1}}, \widetilde{\gamma_{1}} \in D(0,1]$ such that $\widetilde{\gamma_{1}}<\widetilde{\delta_{1}}$, and $\delta_{2}, \gamma_{2} \in[0,1]$ such that $\delta_{2}<\gamma_{2}$.

Theorem 3.1. Let $\beta_{1}=\left\langle\widetilde{\Im}_{\beta_{1}}, \hbar_{\beta_{1}}\right\rangle$ be the cubic set in S then $\beta_{1}=\left\langle\widetilde{\Im}_{\beta_{1}}, \hbar_{\beta_{1}}\right\rangle$ is said to be $\left(\epsilon_{\Gamma}, \in_{\Gamma}\right.$ $\vee \boldsymbol{\Delta}$)-cubic sub $\mathcal{A G}$-groupoid of S if and only if

$$
\begin{aligned}
\operatorname{rmax}\left\{\widetilde{\Im}_{\beta_{1}}\left(l_{1} l_{2}\right), \widetilde{\gamma}_{1}\right\} & \succeq \operatorname{rmin}\left\{\widetilde{\Im}_{\beta_{1}}\left(l_{1}\right), \widetilde{\Im}_{\beta_{1}}\left(l_{2}\right), \widetilde{\delta}_{1}\right\} \text { and } \\
\min \left\{\hbar_{\beta_{1}}\left(l_{1} l_{2}\right), \gamma_{2}\right\} & \leq \max \left\{\hbar_{\beta_{1}}\left(l_{1}\right), \hbar_{\beta_{1}}\left(l_{2}\right), \delta_{2}\right\}
\end{aligned}
$$

where $\widetilde{\delta_{1}}$ and $\widetilde{\gamma_{1}} \in D(0,1]$ such that $\widetilde{\gamma_{1}} \prec \widetilde{\delta_{1}}$, and $\delta_{2}, \gamma_{2} \in[0,1)$ such that $\delta_{2}<\gamma_{2}$.

Proof. Similar to the proof of Lemma 3.1.
Example 3.1. Let $S=\{1,2,3\}$ and the binary operation "." be defined on S as follows:

\cdot	1	2	3
1	2	2	2
2	3	3	3
3	3	3	3

Then (S, \cdot) is an $\mathcal{A G}$-groupoid with no left identity. Define a cubic set $\beta_{1}=\left\langle\widetilde{S}_{\beta_{1}}, \hbar_{\beta_{1}}\right\rangle$ as follows:

S	$\widetilde{\Im}_{\beta_{1}}$	$\hbar_{\beta_{1}}$
1	$[0.2,0.3]$	0.6
2	$[0.4,0.5]$	0.5
3	$[0.6,0.7]$	0.4

Let us define

$\widetilde{\delta_{1}}=[0.81,0.0 .85]$	$\gamma_{2}=0.3$
$\widetilde{\gamma_{1}}=[0.75,0.8]$	$\delta_{2}=0.2$

such that $\widetilde{\gamma_{1}} \prec \widetilde{\delta}_{1}$ and $\delta_{2}<\gamma_{1}$. Then $\beta_{1}=\left\langle\widetilde{\Im}_{\beta_{1}}, \hbar_{\beta_{1}}\right\rangle$ is an $\left(\epsilon_{([0.75,0.8], 0.3)}, \epsilon_{([0.75,0.8], 0.3)} \vee q_{([0.81,0.0 .85], 0.2)}\right)$ cubic sub $\mathcal{A G}$-groupoid of S.
Definition 3.6. A cubic set $\beta_{1}=\left\langle\widetilde{\Im}_{\beta_{1}}, \hbar_{\beta_{1}}\right\rangle$ of S is said to be $\left(\epsilon_{\Gamma}, \in_{\Gamma} \vee \boldsymbol{q} \boldsymbol{\Delta}\right)$-cubic left (resp., right) ideal of S if $l_{1(\tilde{t}, s)} \in_{\Gamma} \beta_{1}$, and $l_{2} \in S$ implies that $\left(l_{2} l_{1}\right)_{\langle\tilde{t}, s\rangle} \in_{\Gamma} \vee q \Delta \beta_{1}\left(\right.$ resp., $\left.\left(l_{1} l_{2}\right)_{\langle\tilde{t}, s\rangle} \in_{\Gamma} \vee q \Delta \beta_{1}\right)$, where $\widetilde{\delta_{1}}, \widetilde{\gamma_{1}} \in D(0,1]$ such that $\widetilde{\gamma_{1}}<\widetilde{\delta_{1}}$ and $\delta_{2}, \gamma_{1} \in[0,1]$ such that $\delta_{2}<\gamma_{1}$.
$\beta_{1}=\left\langle\widetilde{\Im}_{\beta_{1}}, \hbar_{\beta_{1}}\right\rangle$ is said to be an $\left(\epsilon_{\Gamma}, \epsilon_{\Gamma} \vee \boldsymbol{q} \boldsymbol{\Delta}\right)$-cubic ideal if it is both $\left(\epsilon_{\Gamma}, \epsilon_{\Gamma} \vee \boldsymbol{q} \boldsymbol{\Delta}\right)$-cubic left and $\left(\epsilon_{\Gamma}, \in_{\Gamma} \vee \boldsymbol{q} \boldsymbol{\Delta}\right)$-cubic right ideal of S.
Definition 3.7. A cubic set $\beta_{1}=\left\langle\widetilde{\Im}_{\beta_{1}}, \hbar_{\beta_{1}}\right\rangle$ of S is said to be $\left(\epsilon_{\Gamma}, \epsilon_{\Gamma} \vee \boldsymbol{q} \boldsymbol{\Delta}\right)$-cubic generalized bi-ideal of S if for all $l_{1}, l_{2}, l_{3} \in S$ and $\tilde{t_{1}}, \widetilde{t_{2}} \in D(0,1]$ and $s_{1}, s_{2} \in[0,1]$ we have,

$$
l_{1\left(\tilde{t_{1}}, s_{1}\right)} \in_{\Gamma} \beta_{1}, l_{3\left(\tilde{t_{2}}, s_{2}\right)} \in\left(\widetilde{\gamma_{2}}, \gamma_{2}\right) \beta_{1} \text { implies that }\left(\left(l_{1} l_{2}\right) l_{3}\right)_{\left\langle\min \left\{\tilde{t_{1}}, \tilde{t_{2}}\right\}, \max \left\{s_{1}, s_{2}\right\}\right\rangle} \in_{\Gamma} \vee q \Delta \beta_{1} \text {. }
$$

Definition 3.8. A cubic set $\beta_{1}=\left\langle\widetilde{\Im}_{\beta_{1}}, \hbar_{\beta_{1}}\right\rangle$ of S is said to be $\left(\epsilon_{\Gamma}, \epsilon_{\Gamma} \vee \boldsymbol{q} \boldsymbol{\Delta}\right)$-cubic bi-ideal of S if for all $l_{1}, l_{2}, l_{3} \in S$ and $\widetilde{t_{1}}, \widetilde{t_{2}} \in D(0,1]$ and $s_{1}, s_{2} \in[0,1]$ we have,
(i) $l_{1\left(\tilde{t_{1}}, s_{1}\right)} \in_{\Gamma} \beta_{1}, l_{2\left(\tilde{t_{2}}, s_{2}\right)} \in\left(\widetilde{\gamma_{2}}, \gamma_{2}\right) \beta_{1}$ implies that $\left(l_{1} l_{2}\right)_{\left\langle\min \left\{\tilde{t_{1}}, \tilde{t_{2}}\right\}, \max \left\{s_{1}, s_{2}\right\}\right\rangle} \in_{\Gamma} \vee q \Delta \beta_{1}$
(ii) $l_{1\left(\tilde{t_{1}}, s_{1}\right)} \in_{\Gamma} \beta_{1}, l_{3\left(\widetilde{t_{2}}, s_{2}\right)} \in_{\left(\widetilde{\gamma_{2}}, \gamma_{2}\right)} \beta_{1}$ implies that $\left(\left(l_{1} l_{2}\right) l_{3}\right)_{\left\langle\min \left\{\tilde{t_{1}}, \tilde{t_{2}}\right\}, \max \left\{s_{1}, s_{2}\right\}\right\rangle} \in_{\Gamma} \vee q \Delta \beta_{1}$.

Definition 3.9. A cubic set $\beta_{1}=\left\langle\widetilde{\Im}_{\beta_{1}}, \hbar_{\beta_{1}}\right\rangle$ of S is said to be $\left(\epsilon_{\Gamma}, \epsilon_{\Gamma} \vee \boldsymbol{q} \boldsymbol{\Delta}\right)$-cubic interior-ideal of S if for all $l_{1}, l_{2}, l_{3} \in S$ and $\widetilde{t_{1}}, \widetilde{t_{2}} \in D(0,1]$ and $s_{1}, s_{2} \in[0,1]$ we have,
(i) $l_{1\left(\tilde{t_{1}}, s_{1}\right)} \in_{\Gamma} \beta_{1}, l_{2\left(\tilde{t_{2}}, s_{2}\right)} \in\left(\widetilde{\gamma_{2}}, \gamma_{2}\right), \beta_{1}$ implies that $\left(l_{1} l_{2}\right)_{\left\langle\min \left\{\tilde{t_{1}}, \tilde{t_{2}}\right\}, \max \left\{s_{1}, s_{2}\right\}\right\rangle} \in_{\Gamma} \vee q \Delta \beta_{1}$
(ii) $l_{2\left(\tilde{t_{1}}, s_{1}\right)} \in_{\Gamma} \beta_{1}$ implies that $\left(\left(l_{1} l_{2}\right) l_{3}\right)\left\langle\min \left\{\tilde{t_{1}}, \tilde{t_{2}}\right\}, \max \left\{s_{1}, s_{2}\right\}\right\rangle \in \Gamma \vee q \Delta \beta_{1}$,
where $\widetilde{\delta_{1}}$ and $\widetilde{\gamma_{1}} \in D(0,1]$ such that $\widetilde{\gamma_{1}}<\widetilde{\delta_{1}}$, and $\delta_{2}, \gamma_{2} \in[0,1]$ such that $\delta_{2}<\gamma_{2}$.
Definition 3.10. Let $\beta_{1}=\left\langle\widetilde{\Im}_{\beta_{1}}, \hbar_{\beta_{1}}\right\rangle$ be the cubic set in S then $\beta_{1}=\left\langle\widetilde{\Im}_{\beta_{1}}, \hbar_{\beta_{1}}\right\rangle$ is said to be $\left(\in_{\Gamma}, \in_{\Gamma}\right.$ $\vee \boldsymbol{q} \boldsymbol{\Delta}$)-cubic quasi-ideal of S if it satisfies $\operatorname{rmax}\left\{\widetilde{\Im}_{\beta_{1}}\left(l_{1}\right), \widetilde{\gamma}_{1}\right\} \succeq \operatorname{rmin}\left\{\left(\widetilde{\Im}_{\beta_{1}} \circ \widetilde{\Im}_{\mathcal{S}}\right)\left(l_{1}\right),\left(\widetilde{\Im}_{\mathcal{S}} \circ \widetilde{\Im}_{\beta_{1}}\right)\left(l_{1}\right), \widetilde{\delta}_{1}\right\}$ and $\min \left\{\hbar_{\beta_{1}}\left(l_{1}\right), \gamma_{2}\right\} \leq \max \left\{\left(\hbar_{\beta_{1}} \circ \hbar_{\mathcal{S}}\right)\left(l_{1}\right),\left(\hbar_{\mathcal{S}} \circ \hbar_{\beta_{1}}\right)\left(l_{1}\right), \delta_{2}\right\}$,
where $£=\left\langle\widetilde{\Im}_{\mathcal{S}}, \hbar_{\mathcal{S}}\right\rangle=\langle\widetilde{1}, 0\rangle, \widetilde{\delta_{1}}$ and $\widetilde{\gamma_{1}} \in D(0,1]$ such that $\widetilde{\gamma_{1}}<\widetilde{\delta_{1}}$, and $\delta_{2}, \gamma_{2} \in[0,1]$ such that $\delta_{2}<\gamma_{2}$.
Theorem 3.2. Let $\beta_{1}=\left\langle\widetilde{\Im}_{\beta_{1}}, \hbar_{\beta_{1}}\right\rangle$ be the cubic set in S then $\beta_{1}=\left\langle\widetilde{\Im}_{\beta_{1}}, \hbar_{\beta_{1}}\right\rangle$ is said to be $\left(\in_{\Gamma}, \in_{\Gamma}\right.$ $\vee \boldsymbol{q} \boldsymbol{\Delta}$)-cubic ideal of S if and only if

$$
\operatorname{rmax}\left\{\widetilde{\Im}_{\beta_{1}}\left(l_{1} l_{2}\right), \widetilde{\gamma}_{1}\right\} \succeq \operatorname{rmin}\left\{\operatorname{rmax}\left\{\widetilde{\Im}_{\beta_{1}}\left(l_{1}\right), \widetilde{\Im}_{\beta_{1}}\left(l_{2}\right)\right\}, \widetilde{\left.\delta_{1}\right\}}\right.
$$

and

$$
\min \left\{\hbar_{\beta_{2}}\left(l_{1} l_{2}\right), \gamma_{2}\right\} \leq \max \left\{\min \left\{\hbar_{\beta_{1}}\left(l_{1}\right), \hbar_{\beta_{1}}\left(l_{2}\right)\right\}, \delta_{2}\right\},
$$

where $\widetilde{\delta_{1}}, \widetilde{\gamma_{1}} \in D(0,1]$ such that $\widetilde{\gamma_{1}}<\widetilde{\delta_{1}}$, and $\delta_{2}, \gamma_{2} \in[0,1)$ such that $\delta_{2}<\gamma_{2}$.

Proof. Same as in [11].
Example 3.2. If we consider the $\mathcal{A \mathcal { G }}$-groupoid as in Example 3.1 and define the cubic set $\beta_{1}=\left\langle\widetilde{\Im}_{\beta_{1}}, \hbar_{\beta_{1}}\right\rangle$ as follows:

S	$\widetilde{\Im}_{\beta_{1}}$	$\hbar_{\beta_{1}}$
1	$[0.2,0.3]$	0.5
2	$[0.6,0.7]$	0.3
3	$[0.6,0.7]$	0.3

with

$\widetilde{\delta}_{1}=[0.45,0.5]$	$\gamma_{2}=0.45$
$\widetilde{\gamma_{1}}=[0.3,0.4]$	$\delta_{2}=0.4$

such that $\widetilde{\gamma_{1}} \prec \widetilde{\delta}_{1}$ and $\delta_{2}<\gamma_{1}$. Then $\beta_{1}=\left\langle\widetilde{\Im}_{\beta_{1}}, \hbar_{\beta_{1}}\right\rangle$ is an $\left(\epsilon_{\Gamma}, \in_{\Gamma} \vee \boldsymbol{q} \boldsymbol{\Delta}\right)$-cubic ideal of S.
Lemma 3.2. Every $\left(\epsilon_{\Gamma}, \epsilon_{\Gamma} \vee \boldsymbol{q} \boldsymbol{\Delta}\right)$-cubic ideal of S is an $\left(\epsilon_{\Gamma}, \epsilon_{\Gamma} \vee \boldsymbol{q} \boldsymbol{\Delta}\right)$-cubic sub $\mathcal{A \mathcal { G }}$-groupoid of S but converse is not true as shown in the following example.
Example 3.3. Let $S=\{1,2,3\}$ and the binary operation "." be defined on S as follows:

\cdot	1	2	3
1	3	1	2
2	2	3	1
3	1	2	3

Then (S, \cdot) is an \mathcal{A}-groupoid with 3 as a left identity. Define a cubic set $\beta_{1}=\left\langle\widetilde{\Im}_{\beta_{1}}, \hbar_{\beta_{1}}\right\rangle$ as follows:

S	$\widetilde{\Im}_{\beta_{1}}$	$\hbar_{\beta_{1}}$
1	$[0.3,0.4]$	0.6
2	$[0.3,0.4]$	0.5
3	$[0.5,0.6]$	0.4

Let us define

$\widetilde{\delta}_{1}=[0.6,0.7]$	$\gamma_{2}=0.3$
$\widetilde{\gamma_{1}}=[0.2,0.3]$	$\delta_{2}=0.2$

such that $\widetilde{\gamma_{1}} \prec \widetilde{\delta}_{1}$ and $\delta_{2}<\gamma_{2}$. Then $\beta_{1}=\left\langle\widetilde{\Im}_{\beta_{1}}, \hbar_{\beta_{1}}\right\rangle$ is an
$\left(\epsilon_{([0.2,0.3], 0.3)}, \in_{([0.2,0.3], 0.3)} \vee q_{([0.6,0.7], 0.2)}\right)$-cubic sub $\mathcal{A \mathcal { G }}$-groupoid of S. But
$\beta_{1}=\left\langle\widetilde{\Im}_{\beta_{1}}, \hbar_{\beta_{1}}\right\rangle$ is not an $\left(\in_{([0.2,0.3], 0.3)}, \in_{([0.2,0.3], 0.3)} \vee q_{([0.6,0.7], 0.2)}\right)$-cubic ideal of S. This is due to

$$
\begin{aligned}
\operatorname{rmax}\left\{\widetilde{\Im}_{\beta_{1}}(2 \cdot 3), \widetilde{\gamma}_{1}\right\} & =\operatorname{rmax}\left\{\widetilde{\Im}_{\beta_{1}}(1), \widetilde{\gamma}_{1}\right\} \\
& =\operatorname{rmax}\{[0.3,0.4],[0.2,0.3]\}=[0.3,0.4] \\
& \nsucceq \operatorname{rmin}\left\{\operatorname{rmax}\left\{\widetilde{\Im}_{\beta_{1}}(2), \widetilde{\Im}_{\beta_{1}}(3)\right\}, \widetilde{\delta}_{1}\right\} \\
& =\operatorname{rmin}\{\operatorname{rmax}\{[0.3,0.4],[0.5,0.6]\},[0.6,0.7]\} \\
& =\operatorname{rmin}\{[0.5,0.6],[0.6,0.7]\}=[0.5,0.6]
\end{aligned}
$$

Corollary 3.2. Let $\beta_{1}=\left\langle\widetilde{\Im}_{\beta_{1}}, \hbar_{\beta_{1}}\right\rangle$ be the cubic set in S then $\beta_{1}=\left\langle\widetilde{\Im}_{\beta_{1}}, \hbar_{\beta_{1}}\right\rangle$ is said to be an $\left(\epsilon_{\Gamma}, \in_{\Gamma}\right.$ $\vee \boldsymbol{q} \boldsymbol{\Delta}$)-cubic left ideal of S if and only if

$$
\begin{aligned}
\operatorname{rmax}\left\{\widetilde{\Im}_{\beta_{1}}\left(l_{1} l_{2}\right), \widetilde{\gamma}_{1}\right\} & \succeq \operatorname{rmin}\left\{\widetilde{\Im}_{\beta_{1}}\left(l_{1}\right), \widetilde{\delta}_{1}\right\} \text { and } \\
\min \left\{\hbar_{\beta_{1}}\left(l_{1} l_{2}\right), \gamma_{2}\right\} & \leq \max \left\{\hbar_{\beta_{1}}\left(l_{1}\right), \delta_{2}\right\},
\end{aligned}
$$

where $\widetilde{\delta_{1}}, \widetilde{\gamma_{1}} \in D(0,1]$ such that $\widetilde{\gamma_{1}}<\widetilde{\delta_{1}}$, and $\delta_{2}, \gamma_{2} \in[0,1)$ such that $\delta_{2}<\gamma_{2}$.

Proof. The proof is straightforward.
Corollary 3.3. Let $\beta_{1}=\left\langle\widetilde{\Im}_{\beta_{1}}, \hbar_{\beta_{1}}\right\rangle$ be the cubic set in S then $\beta_{1}=\left\langle\widetilde{\Im}_{\beta_{1}}, \hbar_{\beta_{1}}\right\rangle$ is said to be $\left(\epsilon_{\Gamma}, \epsilon_{\Gamma}\right.$ $\vee \boldsymbol{q} \boldsymbol{\Delta}$)-cubic right ideal of S if and only if

$$
\begin{aligned}
\operatorname{rmax}\left\{\widetilde{\Im}_{\beta_{1}}\left(l_{1} l_{2}\right), \widetilde{\gamma}_{1}\right\} & \succeq \operatorname{rmin}\left\{\widetilde{\Im}_{\beta_{1}}\left(l_{1}\right), \widetilde{\delta}_{1}\right\} \text { and } \\
\min \left\{\hbar_{\beta_{1}}\left(l_{1} l_{2}\right), \gamma_{2}\right\} & \leq \max \left\{\hbar_{\beta_{1}}\left(l_{1}\right), \delta_{2}\right\},
\end{aligned}
$$

where $\widetilde{\delta_{1}}, \widetilde{\gamma_{1}} \in D(0,1]$ such that $\widetilde{\gamma_{1}}<\widetilde{\delta_{1}}$, and $\delta_{2}, \gamma_{2} \in[0,1)$ such that $\delta_{2}<\gamma_{2}$.

Proof. The proof is straightforward.
Theorem 3.3. Let $\beta_{1}=\left\langle\widetilde{\Im}_{\beta_{1}}, \hbar_{\beta_{1}}\right\rangle$ be an $\left(\epsilon_{\Gamma}, \in_{\Gamma} \vee \boldsymbol{q} \boldsymbol{\Delta}\right)$-cubic sub $\mathcal{A \mathcal { G }}$-groupoid of S. Then the set $S_{\langle\widetilde{0}, 1\rangle}=\left\{l_{1} \in S \mid \widetilde{\Im}_{\beta_{1}}\left(l_{1}\right) \succeq \widetilde{t_{1}}>\widetilde{0}\right.$ and $\left.\hbar_{\beta_{1}}\left(l_{1}\right) \leq t_{1}<1\right\}$ is a sub $\mathcal{A G}$-groupoid of S.

Proof. Same as in [11].

Theorem 3.4. Let $\beta_{1}=\left\langle\widetilde{\Im}_{\beta_{1}}, \hbar_{\beta_{1}}\right\rangle$ of an $\left(\epsilon_{\Gamma}, \epsilon_{\Gamma} \vee \boldsymbol{q} \boldsymbol{\Delta}\right)$-cubic left (resp., right) ideal of S. Then the set $S_{\langle\widetilde{0}, 1\rangle}=\left\{l_{1} \in S \mid \widetilde{\Im}_{\beta_{1}}\left(l_{1}\right) \succeq \widetilde{t_{1}}>\widetilde{0}\right.$ and $\left.\hbar_{\beta_{1}}\left(l_{1}\right) \leq t_{1}<1\right\}$ cubic left (resp., right) ideal of S.

Proof. The confirmation is direct.
Theorem 3.5. Let R_{1} be a sub $\mathcal{A \mathcal { G }}$-groupoid (resp., ideal, bi-ideal, interior ideal and quasi-ideal) of S, and let $\beta_{1}=\left\langle\widetilde{\Im}_{\beta_{1}}, \hbar_{\beta_{1}}\right\rangle$ be the cubic set in S. If

$$
\begin{aligned}
& \widetilde{\Im}_{\beta_{1}}\left(l_{1}\right) \succeq \widetilde{0.5} \text { and } \hbar_{\beta_{1}}\left(l_{1}\right) \leq 0.5, \text { if } l_{1} \in R_{1}, \\
& \widetilde{\Im}_{\beta_{1}}\left(l_{1}\right)=\widetilde{0} \text { and } \hbar_{\beta_{1}}\left(l_{1}\right)=1, \text { if } l_{1} \notin R_{1},
\end{aligned}
$$

then $\beta_{1}=\left\langle\widetilde{\Im}_{\beta_{1}}, \hbar_{\beta_{1}}\right\rangle$ is an $\left(\epsilon_{\Gamma}, \epsilon_{\Gamma} \vee \boldsymbol{q} \boldsymbol{\Delta}\right)$-cubic sub $\mathcal{A} \mathcal{G}$-groupoid (resp., ideal, bi-ideal, interior ideal and quasi-ideal) of S.

Proof. Same as in [11].
Lemma 3.3. Let $\emptyset \neq R_{1} \subseteq S$, then R_{1} is a sub $\mathcal{A \mathcal { G }}$-groupoid of S if and only if cubic characteristic function $\varkappa_{\Gamma}^{\Delta} R_{1}=\left\langle\widetilde{\Im}_{\varkappa_{\Gamma}^{\Delta} R_{1}}, \hbar_{\varkappa_{\Gamma}^{\Delta} R_{1}}\right\rangle$ of $R_{1}=\left\langle\widetilde{\Im}_{R_{1}}, \hbar_{R_{1}}\right\rangle$ is an $\left(\epsilon_{\Gamma}, \in_{\Gamma} \vee \boldsymbol{q} \boldsymbol{\Delta}\right)$-cubic sub $\mathcal{A G}$-groupoid of S. Where $\widetilde{\delta_{1}}, \widetilde{\gamma_{1}} \in D(0,1]$ such that $\widetilde{\gamma_{1}}<\widetilde{\delta_{1}}$, and $\delta_{2}, \gamma_{2} \in[0,1]$ such that $\delta_{2}<\gamma_{2}$.

Proof. Same as in [11].
Theorem 3.6. The intersection of any two $\left(\epsilon_{\Gamma}, \in_{\Gamma} \vee \boldsymbol{q} \boldsymbol{\Delta}\right)$-cubic sub $\mathcal{A G}$-groupoids (resp., ideals, biideals, interior ideals and quasi-ideals) of S is an $\left(\epsilon_{\Gamma}, \in_{\Gamma} \vee \boldsymbol{q} \boldsymbol{\Delta}\right)$-cubic sub $\mathcal{A G}$-groupoid (resp., ideal, bi-ideal, interior ideal and quasi-ideal) of S.

Proof. Straightforward.

Remark 3.2. The intersection of any family of $\left(\epsilon_{\Gamma}, \in_{\Gamma} \vee \boldsymbol{q} \boldsymbol{\Delta}\right)$-cubic sub $\mathcal{A \mathcal { G }}$-groupoids (resp., ideal) of S is an $\left(\epsilon_{\Gamma}, \in_{\Gamma} \vee \boldsymbol{q} \boldsymbol{\Delta}\right)$-cubic sub $\mathcal{A} \mathcal{G}$-groupoid (resp., ideal) of S.

Let us now define the $\epsilon_{\Gamma} \vee q \Delta$-cubic level set for the cubic set $\beta_{1}=\left\langle\widetilde{\Im}_{\beta_{1}}, \hbar_{\beta_{1}}\right\rangle$ as

$$
\left[\beta_{1}\right]_{(\tilde{t}, \delta)}=\left\{l_{1} \in S: l_{1(\tilde{t}, \delta)} \in_{\Gamma} \vee q \Delta \beta_{1}\right\} .
$$

Theorem 3.7. A cubic set $\beta_{1}=\left\langle\widetilde{\Im}_{\beta_{1}}, \hbar_{\beta_{1}}\right\rangle$ is said to be $\left(\epsilon_{\Gamma}, \in_{\Gamma} \vee \boldsymbol{q} \boldsymbol{\Delta}\right)$-cubic sub $\mathcal{A G}$-groupoid (resp., ideal, bi-ideal, interior ideal and quasi-ideal) of S if and only if $\emptyset \neq\left[\beta_{1}\right]_{(\tilde{t}, \delta)}$ is a sub $\mathcal{A G}$-groupoid (resp., ideal, bi-ideal, interior ideal and quasi-ideal) of S.

Proof. Same as in [11].
Theorem 3.8. Let $\beta_{1}=\left\langle\widetilde{\Im}_{\beta_{1}}, \hbar_{\beta_{1}}\right\rangle$ be the cubic set in S then $\beta_{1}=\left\langle\widetilde{\Im}_{\beta_{1}}, \hbar_{\beta_{1}}\right\rangle$ is said to be $\left(\in_{\Gamma}, \in_{\Gamma}\right.$ $\vee \boldsymbol{q} \boldsymbol{\Delta}$)-cubic bi-ideal of S if and only if

$$
\begin{aligned}
\operatorname{rmax}\left\{\widetilde{\Im}_{\beta_{1}}\left(l_{1} l_{2}\right), \widetilde{\gamma}_{1}\right\} & \succeq \operatorname{rmin}\left\{\operatorname{rmax}\left\{\widetilde{\Im}_{\beta_{1}}\left(l_{1}\right), \widetilde{\Im}_{\beta_{1}}\left(l_{2}\right)\right\}, \widetilde{\delta_{1}}\right\} \\
\min \left\{\hbar_{\beta_{1}}\left(l_{1} l_{2}\right), \gamma_{2}\right\} & \leq \max \left\{\min \left\{\hbar_{\beta_{1}}\left(l_{1}\right), \hbar_{\beta_{1}}\left(l_{2}\right)\right\}, \delta_{2}\right\},
\end{aligned}
$$

and

$$
\begin{aligned}
\operatorname{rmax}\left\{\widetilde{\Im}_{\beta_{1}}\left(l_{1} l_{2} l_{3}\right), \widetilde{\gamma}_{1}\right\} & \succeq \operatorname{rmin}\left\{\operatorname{rmax}\left\{\widetilde{\Im}_{\beta_{1}}\left(l_{1}\right), \widetilde{\Im}_{\beta_{1}}\left(l_{3}\right)\right\}, \widetilde{\delta}_{1}\right\} \\
\min \left\{\hbar_{\beta_{1}}\left(l_{1} l_{2} l_{3}\right), \gamma_{2}\right\} & \leq \max \left\{\min \left\{\hbar_{\beta_{1}}\left(l_{1}\right), \hbar_{\beta_{1}}\left(l_{3}\right)\right\}, \delta_{2}\right\},
\end{aligned}
$$

where $\widetilde{\delta_{1}}, \widetilde{\gamma_{1}} \in D(0,1]$ such that $\widetilde{\gamma_{1}}<\widetilde{\delta_{1}}$, and $\delta_{2}, \gamma_{2} \in[0,1)$ such that $\delta_{2}<\gamma_{2}$.

Proof. It follows from the proof of Theorem 3.2.
Corollary 3.4. A cubic set $\beta_{1}=\left\langle\widetilde{\Im}_{\beta_{1}}, \hbar_{\beta_{1}}\right\rangle$ of a $\mathcal{A G}$-groupoid S is said to be $\left(\epsilon_{\Gamma}, \epsilon_{\Gamma} \vee \boldsymbol{q} \boldsymbol{\Delta}\right)$-cubic generalized bi-ideal of S if and only if

$$
\operatorname{rmax}\left\{\widetilde{\Im}_{\beta_{1}}\left(l_{1} l_{2} l_{3}\right), \widetilde{\gamma}_{1}\right\} \succeq \operatorname{rmin}\left\{\operatorname{rmax}\left\{\widetilde{\Im}_{\beta_{1}}\left(l_{1}\right), \widetilde{\Im}_{\beta_{1}}\left(l_{3}\right)\right\}, \widetilde{\delta}_{1}\right\},
$$

and

$$
\min \left\{\hbar_{\beta_{1}}\left(l_{1} l_{2} l_{3}\right), \gamma_{2}\right\} \leq \max \left\{\min \left\{\hbar_{\beta_{1}}\left(l_{1}\right), \hbar_{\beta_{1}}\left(l_{3}\right)\right\}, \delta_{2}\right\},
$$

where $\widetilde{\delta_{1}}$ and $\widetilde{\gamma_{1}} \in D(0,1]$ such that $\widetilde{\gamma_{1}}<\widetilde{\delta_{1}}$, and $\delta_{2}, \gamma_{2} \in[0,1]$ such that $\delta_{2}<\gamma_{2}$.
Proof. The confirmation is direct.
Theorem 3.9. Let $\beta_{1}=\left\langle\widetilde{\Im}_{\beta_{1}}, \hbar_{\beta_{1}}\right\rangle$ be the cubic set in S then $\beta_{1}=\left\langle\widetilde{\Im}_{\beta_{1}}, \hbar_{\beta_{1}}\right\rangle$ is said to be $\left(\in_{\Gamma}, \in_{\Gamma}\right.$ $\vee \boldsymbol{q} \boldsymbol{\Delta}$)-cubic interior-ideal of S if and only if

$$
\begin{aligned}
r \max \left\{\widetilde{\Im}_{\beta_{1}}\left(l_{1} l_{2}\right), \widetilde{\gamma}_{1}\right\} & \succeq r \min \left\{r \max \left\{\widetilde{\Im}_{\beta_{1}}\left(l_{1}\right), \widetilde{\Im}_{\beta_{1}}\left(l_{2}\right)\right\}, \widetilde{\delta}_{1}\right\} \\
\min \left\{\hbar_{\beta_{1}}\left(l_{1} l_{2}\right), \gamma_{2}\right\} & \leq \max \left\{\min \left\{\hbar_{\beta_{1}}\left(l_{1}\right), \hbar_{\beta_{1}}\left(l_{2}\right)\right\}, \delta_{2}\right\} .
\end{aligned}
$$

and

$$
\begin{aligned}
\operatorname{rmax}\left\{\widetilde{\Im}_{\beta_{1}}\left(l_{1} l_{2} l_{3}\right), \widetilde{\gamma}_{1}\right\} & \succeq \operatorname{rmin}\left\{\widetilde{\Im}_{\beta_{1}}\left(l_{2}\right), \widetilde{\delta}_{1}\right\} \\
\min \left\{\hbar_{\beta_{1}}\left(l_{1} l_{2} l_{3}\right), \gamma_{2}\right\} & \leq \max \left\{\hbar_{\beta_{1}}\left(l_{2}\right), \delta_{2}\right\},
\end{aligned}
$$

where $\widetilde{\delta_{1}}$ and $\widetilde{\gamma_{1}} \in D(0,1]$ such that $\widetilde{\gamma_{1}}<\widetilde{\delta_{1}}$, and $\delta_{2}, \gamma_{2} \in[0,1]$ such that $\delta_{2}<\gamma_{2}$.
Proof. It follows from the proof of Theorem 3.2.

4 Intra-regular $\mathcal{A} \mathcal{G}$-groupoids

This is the principle segment and we we characterize Intra-regular $\mathcal{A G}$-groupoids with the assistance of differenet sorts of $\left(\epsilon_{\Gamma}, \epsilon_{\Gamma} \vee \boldsymbol{q} \boldsymbol{\Delta}\right)$-cubic ideals of S.
Lemma 4.1. Let $\beta_{1}=\left\langle\widetilde{\Im}_{\beta_{1}}, \hbar_{\beta_{1}}\right\rangle$ be a cubic set of an intra-regular $\mathcal{A G}$-groupoid S, then

$$
\mathcal{S} \circ \beta_{1}={ }_{(\Gamma, \Delta)} \beta_{1},
$$

and

$$
\beta_{1} \circ \mathcal{S}={ }_{(\Gamma, \Delta)} \beta_{1},
$$

hold where $S=\left\langle\widetilde{\Im}_{\mathcal{S}}, \hbar_{\mathcal{S}}\right\rangle=\langle\widetilde{1}, 0\rangle$.

Proof. Since S is intra-regular and let $g_{1} \in S$, then there exist $l_{1}, l_{2} \in S$ such that $g_{1}=\left(l_{1} g_{1}^{2}\right) l_{2}$. Now, $g_{1}=\left(l_{1}\left(g_{1} g_{1}\right)\right) l_{2}=\left(g_{1}\left(l_{1} g_{1}\right)\right) l_{2}=\left(l_{2}\left(l_{1} g_{1}\right)\right) g_{1}$. Therefore, we consider

$$
\begin{aligned}
\widetilde{\Im}_{\mathcal{S} \circ \beta_{1}}\left(g_{1}\right) & =\operatorname{rsup}_{g_{1}=\left(l_{2}\left(l_{1} g_{1}\right)\right) g_{1}}\left\{r \min \left\{\widetilde{\Im}_{\mathcal{S}}\left(l_{2}\left(l_{1} g_{1}\right)\right), \widetilde{\Im}_{\beta_{1}}\left(g_{1}\right)\right\}\right\} \\
& =\operatorname{rsup}_{g_{1}=\left(l_{2}\left(l_{1} g_{1}\right)\right) g_{1}}\left\{r \min \left\{\widetilde{1}, \widetilde{\Im}_{\beta_{1}}\left(g_{1}\right)\right\}\right\} \\
& =\operatorname{rsup}_{g_{1}=\left(l_{2}\left(l_{1} g_{1}\right)\right) g_{1}}\left\{\widetilde{\Im}_{\beta_{1}}\left(g_{1}\right)\right\} \\
& =\widetilde{\Im}_{\beta_{1}}\left(g_{1}\right) .
\end{aligned}
$$

On the other hand,

$$
\begin{aligned}
\hbar_{\mathcal{S} \circ \beta_{1}}\left(g_{1}\right) & =\inf _{g_{1}=\left(l_{2}\left(l_{1} g_{1}\right)\right) g_{1}}\left\{\max \left\{\hbar_{\mathcal{S}}\left(l_{2}\left(l_{1} g_{1}\right)\right), \hbar_{\beta_{1}}\left(g_{1}\right)\right\}\right\} \\
& =\inf _{g_{1}=\left(l_{2}\left(l_{1} g_{1}\right)\right) g_{1}}\left\{\max \left\{0, \hbar_{\beta_{1}}\left(g_{1}\right)\right\}\right\} \\
& =\inf _{g_{1}=\left(l_{2}\left(l_{1} g_{1}\right)\right) g_{1}}\left\{\hbar_{\beta_{1}}\left(g_{1}\right)\right\} \\
& =\hbar_{\beta_{1}}\left(g_{1}\right) .
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
\operatorname{rmax}\left\{\operatorname{rmin}\left\{\widetilde{\Im}_{\mathcal{S} \circ \beta_{1}}\left(g_{1}\right), \widetilde{\delta}_{1}\right\}, \widetilde{\gamma}_{1}\right\} & =\operatorname{rmax}\left\{\operatorname{rmin}\left\{\widetilde{\Im}_{\beta_{1}}\left(g_{1}\right), \widetilde{\delta}_{1}\right\}, \widetilde{\gamma}_{1}\right\} \\
\min \left\{\max \left\{\hbar_{\mathcal{S}_{\circ \beta_{1}}}\left(g_{1}\right), \delta_{2}\right\}, \gamma_{2}\right\} & =\min \left\{\max \left\{\hbar_{\beta_{1}}\left(g_{1}\right), \delta_{2}\right\}, \gamma_{2}\right\}
\end{aligned}
$$

Thus, $\operatorname{So} \beta_{1}=(\Gamma, \Delta) \beta_{1}$ holds.
Now, for $\beta_{1} \circ S={ }_{(\Gamma, \Delta)} \beta_{1}$ we have

$$
\begin{aligned}
g_{1} & =\left(l_{1} g_{1}^{2}\right) l_{2}=\left(l_{1} g_{1}^{2}\right)\left(g_{5} l_{2}\right) \text { as } g_{5} \text { is left identity } \\
& =\left(l_{2} g_{5}\right)\left(g_{1}^{2} l_{1}\right) \text { by paramedial law } \\
& =\left(g_{1} g_{1}\right)\left(\left(l_{2} g_{5}\right) l_{1}\right) \text { by } g_{1}\left(g_{2} g_{3}\right)=g_{2}\left(g_{1} g_{3}\right) \\
& =\left(l_{1}\left(l_{2} g_{5}\right)\right)\left(g_{1} g_{1}\right) \text { by paramedial law } \\
& =g_{1}\left(\left(l_{1}\left(l_{2} g_{5}\right)\right) g_{1}\right) \text { by } g_{1}\left(g_{2} g_{3}\right)=g_{2}\left(g_{1} g_{3}\right) .
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
\widetilde{\Im}_{\beta_{1} \circ \mathcal{S}}\left(g_{1}\right) & =\operatorname{rsup}_{g_{1}=g_{1}\left(\left(l_{1}\left(l_{2} g_{5}\right)\right) g_{1}\right)}\left\{r \min \left\{\widetilde{\Im}_{\beta_{1}}\left(g_{1}\right), \widetilde{\Im}_{\mathcal{S}}\left(\left(l_{1}\left(l_{2} g_{5}\right)\right) g_{1}\right)\right\}\right\} \\
& =\operatorname{isup}_{g_{1}=g_{1}\left(\left(l_{1}\left(l_{2} g_{5}\right)\right) g_{1}\right)}\left\{r \min \left\{\widetilde{\Im}_{\beta_{1}}\left(g_{1}\right), \widetilde{1}\right\}\right\} \\
& =\widetilde{\operatorname{rsup}}_{g_{1}=g_{1}\left(\left(l_{1}\left(l_{2} g_{5}\right)\right) g_{1}\right)}\left\{\widetilde{\Im}_{\beta_{1}}\left(g_{1}\right)\right\} \\
& =\widetilde{\Im}_{\beta_{1}}\left(g_{1}\right) .
\end{aligned}
$$

On the other hand,

$$
\begin{aligned}
\hbar_{\beta_{1} \circ \mathcal{S}}\left(g_{1}\right) & =\inf _{g_{1}=g_{1}\left(\left(l_{1}\left(l_{2} g_{5}\right)\right) g_{1}\right)}\left\{\max \left\{\hbar_{\beta_{1}}\left(g_{1}\right), \hbar_{\mathcal{S}}\left(\left(l_{1}\left(l_{2} g_{5}\right)\right) g_{1}\right)\right\}\right\} \\
& =\inf _{g_{1}=g_{1}\left(\left(l_{1}\left(l_{2} g_{5}\right)\right) g_{1}\right)}\left\{\max \left\{\hbar_{\beta_{1}}\left(g_{1}\right), 0\right\}\right\} \\
& =\inf _{g_{1}=g_{1}\left(\left(l_{1}\left(l_{2} g_{5}\right)\right) g_{1}\right)}\left\{\hbar_{\beta_{1}}\left(g_{1}\right)\right\} \\
& =\hbar_{\beta_{1}}\left(g_{1}\right) .
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
\operatorname{rmax}\left\{\operatorname{rmin}\left\{\widetilde{\Im}_{\beta_{1} \circ \mathcal{S}}\left(g_{1}\right), \widetilde{\delta}_{1}\right\}, \widetilde{\gamma}_{1}\right\} & =r \max \left\{\operatorname{rmin}\left\{\widetilde{\Im}_{\beta_{1}}\left(g_{1}\right), \widetilde{\delta}_{1}\right\}, \widetilde{\gamma}_{1}\right\} \\
\min \left\{\max \left\{\hbar_{\beta_{1} \mathcal{L}}\left(g_{1}\right), \delta_{2}\right\}, \gamma_{2}\right\} & =\min \left\{\max \left\{\hbar_{\beta_{1}}\left(g_{1}\right), \delta_{2}\right\}, \gamma_{2}\right\} .
\end{aligned}
$$

Thus, $\beta_{1} \circ \mathrm{~S}={ }_{(\Gamma, \Delta)} \beta_{1}$ holds.
Corollary 4.1. Let $\beta_{1}=\left\langle\widetilde{\Im}_{\beta_{1}}, \hbar_{\beta_{1}}\right\rangle$ be a cubic left(resp,. right, two sided) ideal of an intra-regular $\mathcal{A G}$-groupoid S, then $S \circ \beta_{1}={ }_{(\Gamma, \Delta)} \beta_{1}$ and $\beta_{1} \circ S=_{(\Gamma, \Delta)} \beta_{1}$ hold where $S=\left\langle\widetilde{\Im}_{\mathcal{S}}, \hbar_{\mathcal{S}}\right\rangle=\langle\widetilde{1}, 0\rangle$.

Proof. It follows from the proof of Lemma 4.1.
Theorem 4.1. Let $\beta_{1}=\left\langle\widetilde{\Im}_{\beta_{1}}, \hbar_{\beta_{1}}\right\rangle$ be a cubic set of an intra-regular $\mathcal{A} \mathcal{G}$-groupoid S with left identity, then the following assertion are equivalent.
(i) $\beta_{1}=\left\langle\widetilde{\Im}_{\beta_{1}}, \hbar_{\beta_{1}}\right\rangle$ is an $\left(\epsilon_{\Gamma}, \in_{\Gamma} \vee \boldsymbol{q} \boldsymbol{\Delta}\right)$-cubic ideal of S.
(ii) $\beta_{1}=\left\langle\widetilde{\Im}_{\beta_{1}}, \hbar_{\beta_{1}}\right\rangle$ is an $\left(\epsilon_{\Gamma}, \epsilon_{\Gamma} \vee \boldsymbol{q} \boldsymbol{\Delta}\right)$-cubic interior-ideal of S.

Proof. It is obvious.
Theorem 4.2. Let $\beta_{1}=\left\langle\widetilde{\Im}_{\beta_{1}}, \hbar_{\beta_{1}}\right\rangle$ be a cubic set of an intra-regular $\mathcal{A \mathcal { G }}$-groupoid S with left identity, then the following conditions are equivalent.
(i) $\beta_{1}=\left\langle\widetilde{\Im}_{\beta_{1}}, \hbar_{\beta_{1}}\right\rangle$ is an $\left(\epsilon_{\Gamma}, \in_{\Gamma} \vee \boldsymbol{q} \boldsymbol{\Delta}\right)$-cubic left-ideal of S.
(ii) $\beta_{1}=\left\langle\widetilde{\Im}_{\beta_{1}}, \hbar_{\beta_{1}}\right\rangle$ is an $\left(\epsilon_{\Gamma}, \epsilon_{\Gamma} \vee \boldsymbol{q} \boldsymbol{\Delta}\right)$-cubic right-ideal of S.
(iii) $\beta_{1}=\left\langle\widetilde{\Im}_{\beta_{1}}, \hbar_{\beta_{1}}\right\rangle$ is an $\left(\epsilon_{\Gamma}, \in_{\Gamma} \vee \boldsymbol{q} \boldsymbol{\Delta}\right)$-cubic ideal of S.
(iv) $\beta_{1}=\left\langle\widetilde{\Im}_{\beta_{1}}, \hbar_{\beta_{1}}\right\rangle$ is an $\left(\epsilon_{\Gamma}, \epsilon_{\Gamma} \vee \boldsymbol{q} \boldsymbol{\Delta}\right)$-cubic bi-ideal of S.
(v) $\beta_{1}=\left\langle\widetilde{\Im}_{\beta_{1}}, \hbar_{\beta_{1}}\right\rangle$ is an $\left(\epsilon_{\Gamma}, \epsilon_{\Gamma} \vee \boldsymbol{q} \boldsymbol{\Delta}\right)$-cubic generalized bi-ideal of S.
(vi) $\beta_{1}=\left\langle\widetilde{\Im}_{\beta_{1}}, \hbar_{\beta_{1}}\right\rangle$ is an $\left(\epsilon_{\Gamma}, \epsilon_{\Gamma} \vee \boldsymbol{q} \boldsymbol{\Delta}\right)$-cubic interior-ideal of S.
(vii) $\beta_{1}=\left\langle\widetilde{\Im}_{\beta_{1}}, \hbar_{\beta_{1}}\right\rangle$ is an $\left(\epsilon_{\Gamma}, \epsilon_{\Gamma} \vee \boldsymbol{q} \boldsymbol{\Delta}\right)$-cubic quasi-ideal of S.
(viii) $\beta_{1} \circ S={ }_{(\Gamma, \Delta)} \beta_{1}$ and $S \circ \beta_{1}={ }_{(\Gamma, \Delta)} \beta_{1}$ where $S=\left\langle\widetilde{S}_{\mathcal{S}}, \hbar_{\mathcal{S}}\right\rangle=\langle\widetilde{1}, 0\rangle$.

Proof. $(i) \Rightarrow(v i i i)$
It directly follows from the Corollary 4.1.

$$
(v i i i) \Rightarrow(v i i) \text { is obvious. }
$$

$$
(v i i) \Rightarrow(v i)
$$

Let $\beta_{1}=\left\langle\widetilde{\Im}_{\beta_{1}}, \hbar_{\beta_{1}}\right\rangle$ be an $\left(\epsilon_{\Gamma}, \epsilon_{\Gamma} \vee \boldsymbol{q} \boldsymbol{\Delta}\right)$-cubic quasi-ideal of an intra-regular $\mathcal{A \mathcal { G }}$-groupoid S with left identity. Since S is intra-regular and let $g_{1} \in S$, then there exist $g_{2}, g_{3} \in S$ such that $g_{1}=\left(g_{2} g_{1}^{2}\right) g_{3}$. Now, consider

$$
\begin{aligned}
\left(l_{1} g_{1}\right) l_{2} & =\left(l_{1}\left(\left(g_{2} g_{1}^{2}\right) g_{3}\right)\right) l_{2} \text { as } g_{1}=\left(g_{2} g_{1}^{2}\right) g_{3} \\
& =\left(\left(g_{2} g_{1}^{2}\right)\left(l_{1} g_{3}\right)\right) l_{2} \text { by } g_{1}\left(g_{2} g_{3}\right)=g_{2}\left(g_{1} g_{3}\right) \\
& =\left(\left(g_{3} l_{1}\right)\left(g_{1}^{2} g_{2}\right)\right) l_{2} \text { by }\left(g_{1} g_{2}\right)\left(g_{3} g_{4}\right)=\left(g_{4} g_{3}\right)\left(g_{2} g_{1}\right) \\
& =\left(g_{1}^{2}\left(\left(g_{3} l_{1}\right) g_{2}\right)\right) l_{2} \text { by } g_{1}\left(g_{2} g_{3}\right)=g_{2}\left(g_{1} g_{3}\right) \\
& =\left(l_{2}\left(\left(g_{3} l_{1}\right) g_{2}\right)\right)\left(g_{1} g_{1}\right) \text { by left invertive law } \\
& =g_{1}\left(\left(l_{2}\left(\left(g_{3} l_{1}\right) g_{2}\right)\right) g_{1}\right) \text { by } g_{1}\left(g_{2} g_{3}\right)=g_{2}\left(g_{1} g_{3}\right),
\end{aligned}
$$

and

$$
\begin{aligned}
\left(l_{1} g_{1}\right) l_{2} & =\left(l_{1}\left(\left(g_{2} g_{1}^{2}\right) g_{3}\right)\right) l_{2} \text { as } g_{1}=\left(g_{2} g_{1}^{2}\right) g_{3} \\
& =\left(\left(g_{2} g_{1}^{2}\right)\left(l_{1} g_{3}\right)\right) l_{2} \text { by } g_{1}\left(g_{2} g_{3}\right)=g_{2}\left(g_{1} g_{3}\right) \\
& =\left(\left(g_{3} l_{1}\right)\left(g_{1}^{2} g_{2}\right)\right) l_{2} \text { by }\left(g_{1} g_{2}\right)\left(g_{3} g_{4}\right)=\left(g_{4} g_{3}\right)\left(g_{2} g_{1}\right) \\
& =\left(g_{1}^{2}\left(\left(g_{3} l_{1}\right) g_{2}\right)\right) l_{2} \text { by } g_{1}\left(g_{2} g_{3}\right)=g_{2}\left(g_{1} g_{3}\right) \\
& =\left(l_{2}\left(\left(g_{3} l_{1}\right) g_{2}\right)\right)\left(g_{1} g_{1}\right) \text { by left invertive law } \\
& =\left(g_{1} g_{1}\right)\left(\left(\left(g_{3} l_{1}\right) g_{2}\right) l_{2}\right) \text { by }\left(g_{1} g_{2}\right)\left(g_{3} g_{4}\right)=\left(g_{4} g_{3}\right)\left(g_{2} g_{1}\right) \\
& =\left(\left(\left(\left(g_{3} l_{1}\right) g_{2}\right) l_{2}\right) g_{1}\right) g_{1} \text { by left invertive law. }
\end{aligned}
$$

Since $\beta_{1}=\left\langle\widetilde{\Im}_{\beta_{1}}, \hbar_{\beta_{1}}\right\rangle$ is an $\left(\epsilon_{\Gamma}, \epsilon_{\Gamma} \vee \boldsymbol{q} \boldsymbol{\Delta}\right)$-cubic quasi-ideal of S, thus,

$$
\begin{equation*}
\operatorname{rmax}\left\{\widetilde{\Im}_{\beta_{1}}\left(\left(l_{1} g_{1}\right) l_{2}\right), \widetilde{\gamma}_{1}\right\} \succeq \operatorname{rmin}\left\{\left(\widetilde{\Im}_{\beta_{1}} \circ \widetilde{\Im}_{\mathcal{S}}\right)\left(\left(l_{1} g_{1}\right) l_{2}\right),\left(\widetilde{\Im}_{\mathcal{S}} \circ \widetilde{\Im}_{\beta_{1}}\right)\left(\left(l_{1} g_{1}\right) l_{2}\right), \widetilde{\delta}_{1}\right\}, \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
\min \left\{\hbar_{\beta_{1}}\left(\left(l_{1} g_{1}\right) l_{2}\right), \gamma_{2}\right\} \leq \max \left\{\left(\hbar_{\beta_{1}} \circ \hbar_{\mathcal{S}}\right)\left(\left(l_{1} g_{1}\right) l_{2}\right),\left(\hbar_{\mathcal{S}} \circ \hbar_{\beta_{1}}\right)\left(\left(l_{1} g_{1}\right) l_{2}\right), \delta_{2}\right\}, \tag{2}
\end{equation*}
$$

where $S=\left\langle\widetilde{\Im}_{\mathcal{S}}, \hbar_{\mathcal{S}}\right\rangle=\langle\widetilde{1}, 0\rangle$. We consider

$$
\begin{align*}
& \left(\widetilde{\Im}_{\beta_{1}} \circ \widetilde{\Im}_{\mathcal{L}}\right)\left(\left(l_{1} g_{1}\right) l_{2}\right) \\
& =r \sup _{\left(l_{1} g_{1}\right) l_{2}=g_{1}\left(\left(l_{2}\left(\left(g_{3} l_{1}\right) g_{2}\right)\right) g_{1}\right)}\left\{r \min \left\{\widetilde{\Im}_{\beta_{1}}\left(g_{1}\right), \widetilde{\Im}_{\mathcal{L}}\left(\left(\left(l_{2}\left(\left(g_{3} l_{1}\right) g_{2}\right)\right) g_{1}\right)\right)\right\}\right\} \\
& =r \sup _{\left(l_{1} g_{1}\right) l_{2}=g_{1}\left(\left(l_{2}\left(\left(g_{3} l_{1}\right) g_{2}\right)\right) g_{1}\right)}\left\{r \min \left\{\widetilde{\Im}_{\beta_{1}}\left(g_{1}\right), \widetilde{1}\right\}\right\} \succeq \widetilde{\Im}_{\beta_{1}}\left(g_{1}\right), \tag{3}
\end{align*}
$$

and

$$
\begin{align*}
& \left(\widetilde{\Im}_{\mathcal{L}} \circ \widetilde{\Im}_{\beta_{1}}\right)\left(\left(l_{1} g_{1}\right) l_{2}\right) \\
& =r \sup _{\left(l_{1} g_{1}\right) l_{2}=\left(\left(\left(\left(g_{3} l_{1}\right) g_{2}\right) l_{2}\right) g_{1}\right) g_{1}}\left\{r \min \left\{\widetilde{\Im}_{\mathcal{L}}\left(\left(\left(\left(\left(g_{3} l_{1}\right) g_{2}\right) l_{2}\right) g_{1}\right)\right), \widetilde{\Im}_{\beta_{1}}\left(g_{1}\right)\right\}\right\} \tag{4}\\
& =r \sup _{\left(l_{1} g_{1}\right) l_{2}=\left(\left(\left(\left(g_{3} l_{1}\right) g_{2}\right) l_{2}\right) g_{1}\right) g_{1}}\left\{r \min \left\{\widetilde{1}, \widetilde{\Im}_{\beta_{1}}\left(g_{1}\right)\right\}\right\} \succeq \widetilde{\Im}_{\beta_{1}}\left(g_{1}\right) .
\end{align*}
$$

By using (3) and (4) into (1), we get

$$
\begin{align*}
& \operatorname{rmax}\left\{\widetilde{\Im}_{\beta_{1}}\left(\left(l_{1} g_{1}\right) l_{2}\right), \widetilde{\gamma}_{1}\right\} \\
& \succeq \operatorname{rmin}\left\{\left(\widetilde{\Im}_{\beta_{1}} \circ \widetilde{\Im}_{\mathcal{L}}\right)\left(\left(l_{1} g_{1}\right) l_{2}\right),\left(\widetilde{\Im}_{\mathcal{L}} \circ \widetilde{\Im}_{\beta_{1}}\right)\left(\left(l_{1} g_{1}\right) l_{2}\right), \widetilde{\delta}_{1}\right\} \tag{5}\\
& \succeq \operatorname{rmin}\left\{\widetilde{\Im}_{\beta_{1}}\left(g_{1}\right), \widetilde{\Im}_{\beta_{1}}\left(g_{1}\right), \widetilde{\delta}_{1}\right\}=\operatorname{rmin}\left\{\widetilde{\Im}_{\beta_{1}}\left(g_{1}\right), \widetilde{\delta}_{1}\right\} .
\end{align*}
$$

On the other hand,

$$
\begin{align*}
& \left(\hbar_{\beta_{1}} \circ \hbar_{\mathcal{L}}\right)\left(\left(l_{1} g_{1}\right) l_{2}\right) \\
& =\inf _{\left(l_{1} g_{1}\right) l_{2}=g_{1}\left(\left(l_{2}\left(\left(g_{3} l_{1}\right) g_{2}\right)\right) g_{1}\right)}\left\{\max \left\{\hbar_{\beta_{1}}\left(g_{1}\right), \hbar_{\mathcal{L}}\left(\left(\left(l_{2}\left(\left(g_{3} l_{1}\right) g_{2}\right)\right) g_{1}\right)\right)\right\}\right\} \tag{6}\\
& =\inf _{\left(l_{1} g_{1}\right) l_{2}=g_{1}\left(\left(l_{2}\left(\left(g_{3} l_{1}\right) g_{2}\right)\right) g_{1}\right)}\left\{\max \left\{\hbar_{\beta_{1}}\left(g_{1}\right), 0\right\}\right\} \leq \hbar_{\beta_{1}}\left(g_{1}\right),
\end{align*}
$$

and

$$
\begin{align*}
& \left(\hbar_{\mathcal{L}} \circ \hbar_{\beta_{1}}\right)\left(\left(l_{1} g_{1}\right) l_{2}\right) \\
& =\inf _{\left.\left(l_{1} g_{1}\right) l_{2}=\left(\left(\left(g_{3} l_{1}\right) g_{2}\right) l_{2}\right) g_{1}\right) g_{1}}\left\{\max \left\{\hbar_{\mathcal{L}}\left(\left(\left(\left(\left(g_{3} l_{1}\right) g_{2}\right) l_{2}\right) g_{1}\right)\right), \hbar_{\beta_{1}}\left(g_{1}\right)\right\}\right\} \tag{7}\\
& =\inf _{\left(l_{1} g_{1}\right) l_{2}=\left(\left(\left(\left(g_{3} l_{1}\right) g_{2}\right) l_{2}\right) g_{1}\right) g_{1}}\left\{\max \left\{0, \hbar_{\beta_{1}}\left(g_{1}\right)\right\}\right\} \leq \hbar_{\beta_{1}}\left(g_{1}\right) .
\end{align*}
$$

By using (6) and (7) into (2), we get

$$
\begin{align*}
& \min \left\{\hbar_{\beta_{1}}\left(\left(l_{1} g_{1}\right) l_{2}\right), \gamma_{2}\right\} \\
& \leq \max \left\{\left(\hbar_{\beta_{1}} \circ \hbar_{\mathcal{L}}\right)\left(\left(l_{1} g_{1}\right) l_{2}\right),\left(\hbar_{\mathcal{L}} \circ \hbar_{\beta_{1}}\right)\left(\left(l_{1} g_{1}\right) l_{2}\right), \delta_{2}\right\} \tag{8}\\
& \leq \max \left\{\hbar_{\beta_{1}}\left(g_{1}\right), \hbar_{\beta_{1}}\left(g_{1}\right), \delta_{2}\right\}=\max \left\{\hbar_{\beta_{1}}\left(g_{1}\right), \delta_{2}\right\} .
\end{align*}
$$

From (5) and (8), we have $\beta_{1}=\left\langle\widetilde{\Im}_{\beta_{1}}, \hbar_{\beta_{1}}\right\rangle$ is an $\left(\epsilon_{\Gamma}, \epsilon_{\Gamma} \vee \boldsymbol{q} \boldsymbol{\Delta}\right)$-cubic interior-ideal of S.

$$
(v i) \Rightarrow(v)
$$

Let $\beta_{1}=\left\langle\widetilde{\Im}_{\beta_{1}}, \hbar_{\beta_{1}}\right\rangle$ be an $\left(\epsilon_{\Gamma}, \epsilon_{\Gamma} \vee \boldsymbol{q} \boldsymbol{\Delta}\right)$-cubic interior-ideal of an intra-regular $\mathcal{A G}$-groupoid S with left identity. Then by Theorem 4.1, $\beta_{1}=\left\langle\widetilde{\Im}_{\beta_{1}}, \hbar_{\beta_{1}}\right\rangle$ is an $\left(\epsilon_{\Gamma}, \epsilon_{\Gamma} \vee \boldsymbol{q} \boldsymbol{\Delta}\right)$-cubic ideal of S. So it is obviously an ($\epsilon_{\Gamma}, \in_{\Gamma} \vee \boldsymbol{q} \boldsymbol{\Delta}$)-cubic generalized bi-ideal.
$(v) \Rightarrow(i v)$ is obvious.

$$
(i v) \Rightarrow(i i i)
$$

Let $\beta_{1}=\left\langle\widetilde{\Im}_{\beta_{1}}, \hbar_{\beta_{1}}\right\rangle$ be an $\left(\epsilon_{\Gamma}, \epsilon_{\Gamma} \vee \boldsymbol{q} \boldsymbol{\Delta}\right)$-cubic bi-ideal of an intra-regular $\mathcal{A \mathcal { G }}$-groupoid S with left identity. Since S is intra-regular and let $g_{1} \in S$, then there exist $l_{1}, l_{2} \in S$ such that $g_{1}=\left(l_{1} g_{1}^{2}\right) l_{2}$.

Now consider,

$$
\begin{aligned}
\left(g_{1} g_{2}\right) & =\left(\left(\left(l_{1}\left(g_{1} g_{1}\right)\right) l_{2}\right) g_{2}\right)=\left(\left(\left(g_{1}\left(l_{1} g_{1}\right)\right) l_{2}\right) g_{2}\right) \\
& =\left(\left(g_{2} l_{2}\right)\left(\left(g_{5} g_{1}\right)\left(l_{1} g_{1}\right)\right)\right)=\left(\left(g_{2} l_{2}\right)\left(\left(g_{1} l_{1}\right)\left(g_{1} g_{5}\right)\right)\right) \\
& =\left(\left(\left(g_{1} g_{5}\right)\left(g_{1} l_{1}\right)\right)\left(l_{2} g_{2}\right)\right)=\left(\left(g_{1}\left(\left(g_{1} g_{5}\right) l_{1}\right)\right)\left(l_{2} g_{2}\right)\right) \\
& =\left(\left(\left(l_{2} g_{2}\right)\left(\left(g_{1} g_{5}\right) l_{1}\right)\right) g_{1}\right)=\left(\left(\left(l_{2} g_{2}\right)\left(\left(\left(\left(l_{1} g_{1}^{2}\right) l_{2}\right) g_{5}\right) l_{1}\right)\right) g_{1}\right) \\
& =\left(\left(\left(l_{2} g_{2}\right)\left(\left(l_{2}\left(l_{1} g_{1}^{2}\right)\right)\left(g_{5} l_{1}\right)\right)\right) g_{1}\right)=\left(\left(\left(l_{2} g_{2}\right)\left(\left(l_{1} g_{5}\right)\left(\left(l_{1} g_{1}^{2}\right)\left(g_{5} l_{2}\right)\right)\right)\right) g_{1}\right) \\
& =\left(\left(\left(l_{2} g_{2}\right)\left(\left(l_{1} g_{5}\right)\left(\left(l_{2} g_{5}\right)\left(g_{1}^{2} l_{1}\right)\right)\right)\right) g_{1}\right)=\left(\left(\left(l_{2} g_{2}\right)\left(\left(l_{1} g_{5}\right)\left(g_{1}^{2}\left(\left(l_{2} g_{5}\right) l_{1}\right)\right)\right)\right) g_{1}\right) \\
& =\left(\left(\left(l_{2} g_{2}\right)\left(g_{1}^{2}\left(\left(l_{1} g_{5}\right)\left(\left(l_{2} g_{5}\right) l_{1}\right)\right)\right)\right) g_{1}\right)=\left(\left(g_{1}^{2}\left(\left(l_{2} g_{2}\right)\left(\left(l_{1} g_{5}\right)\left(\left(l_{2} g_{5}\right) l_{1}\right)\right)\right)\right) g_{1}\right) .
\end{aligned}
$$

Now,

$$
\begin{aligned}
r \max \left\{\widetilde{\Im}_{\beta_{1}}\left(g_{1} g_{2}\right), \widetilde{\gamma_{1}}\right\} & =r \max \left\{\widetilde{\Im}_{\beta_{1}}\left(\left(\left(g_{1}^{2}\left(\left(l_{2} g_{2}\right)\left(\left(l_{1} g_{5}\right)\left(\left(l_{2} g_{5}\right) l_{1}\right)\right)\right)\right) g_{1}\right)\right), \widetilde{\gamma_{1}}\right\} \\
& \succeq r \min \left\{\widetilde{\Im}_{\beta_{1}}\left(g_{1}^{2}\right), \widetilde{\Im}_{\beta_{1}}\left(g_{1}\right), \widetilde{\delta}_{1}\right\} \\
& =r \min \left\{\widetilde{\Im}_{\beta_{1}}\left(g_{1}\right), \widetilde{\Im}_{\beta_{1}}\left(g_{1}\right), \widetilde{\delta}_{1}\right\}=r \min \left\{\widetilde{\Im}_{\beta_{1}}\left(g_{1}\right), \widetilde{\delta}_{1}\right\}
\end{aligned}
$$

and

$$
\begin{aligned}
\min \left\{\hbar_{\beta_{1}}\left(g_{1} g_{2}\right), \gamma_{2}\right\} & =\min \left\{\hbar_{\beta_{1}}\left(\left(\left(g_{1}^{2}\left(\left(l_{2} g_{2}\right)\left(\left(l_{1} g_{5}\right)\left(\left(l_{2} g_{5}\right) l_{1}\right)\right)\right)\right) g_{1}\right)\right), \gamma_{2}\right\} \\
& \leq \max \left\{\hbar_{\beta_{1}}\left(g_{1}^{2}\right), \hbar_{\beta_{1}}\left(g_{1}\right), \delta_{2}\right\} \\
& =\max \left\{\hbar_{\beta_{1}}\left(g_{1}\right), \hbar_{\beta_{1}}\left(g_{1}\right), \delta_{2}\right\}=\max \left\{\hbar_{\beta_{1}}\left(g_{1}\right), \delta_{2}\right\} .
\end{aligned}
$$

Thus, $\beta_{1}=\left\langle\widetilde{\Im}_{\beta_{1}}, \hbar_{\beta_{1}}\right\rangle$ is an $\left(\epsilon_{\Gamma}, \epsilon_{\Gamma} \vee \boldsymbol{q} \boldsymbol{\Delta}\right)$-cubic right ideal of S, which is also an $\left(\epsilon_{\Gamma}, \epsilon_{\Gamma} \vee \boldsymbol{q} \boldsymbol{\Delta}\right)$ cubic left ideal of S. Hence $\beta_{1}=\left\langle\widetilde{\Im}_{\beta_{1}}, \hbar_{\beta_{1}}\right\rangle$ is an $\left(\epsilon_{\Gamma}, \in_{\Gamma} \vee \boldsymbol{q} \boldsymbol{\Delta}\right)$-cubic ideal of S.
$(i i i) \Rightarrow(i i)$ and $(i i) \Rightarrow(i)$ are obvious.
Definition 4.1. Let $\beta_{1}=\left\langle\widetilde{\Im}_{\beta_{1}}, \hbar_{\beta_{1}}\right\rangle$ and $\beta_{2}=\left\langle\widetilde{\Im}_{\beta_{2}}, \hbar_{\beta_{2}}\right\rangle$ be two cubic sets of S. We define the cubic sets $\beta_{1}^{*}=\left\langle\widetilde{\Im}_{\beta_{1}^{*}}, \hbar_{\beta_{1}^{*}}\right\rangle, \beta_{1} \wedge^{*} \beta_{2}=\left\langle\widetilde{\Im}_{\beta_{1} \wedge \beta_{2}}, \hbar_{\beta_{1} \vee * \beta_{2}}\right\rangle, \beta_{1} \vee^{*} \beta_{2}=\left\langle\widetilde{\Im}_{\beta_{1} \vee * \beta_{2}}, \hbar_{\beta_{1} \wedge * \beta_{2}}\right\rangle$ and $\beta_{1} \circ * \beta_{2}=\left\langle\widetilde{\Im}_{\beta_{1} \circ * \beta_{2}}, \hbar_{\beta_{1} \circ * \beta_{2}}\right\rangle$ as follows:
(i)

$$
\begin{aligned}
& \beta_{1}^{*}\left(g_{1}\right) \\
& =\left\langle\widetilde{\Im}_{\beta_{1}^{*}}\left(g_{1}\right), \hbar_{\beta_{1}^{*}}\left(g_{1}\right)\right\rangle \\
& =\left\langle r \min \left\{r \max \left\{\widetilde{\Im}_{\beta_{1}}\left(g_{1}\right), \widetilde{\gamma_{1}}\right\}, \widetilde{\delta}_{1}\right\}, \max \left\{\min \left\{\hbar_{\beta_{1}}\left(g_{1}\right), \gamma_{2}\right\}, \delta_{2}\right\}\right\rangle \\
& =\left\langle\left(\widetilde{\Im}_{\beta_{1}}\left(g_{1}\right) \widetilde{\vee} \widetilde{\gamma_{1}}\right) \widetilde{\wedge} \widetilde{\delta}_{1},\left(\hbar_{\beta_{1}}\left(g_{1}\right) \wedge \gamma_{2}\right) \vee \delta_{2}\right\rangle,
\end{aligned}
$$

(ii)

$$
\begin{aligned}
& \beta_{1} \wedge^{*} \beta_{2}\left(g_{1}\right) \\
& =\left\langle\widetilde{\Im}_{\beta_{1} \wedge * \beta_{2}}\left(g_{1}\right), \hbar_{\beta_{1} \vee * \beta_{2}}\left(g_{1}\right)\right\rangle \\
& =\left\langle\begin{array}{c}
\left.r \min \left\{r \max \left\{\widetilde{\Im}_{\beta_{1}} \widetilde{\wedge} \widetilde{\Im}_{\beta_{2}}\right)\left(g_{1}\right), \widetilde{\gamma_{1}}\right\}, \widetilde{\delta_{1}}\right\}, \\
\max \left\{\min \left\{\left(\hbar_{\beta_{1}} \vee \hbar_{\beta_{2}}\right)\left(g_{1}\right), \gamma_{2}\right\}, \delta_{2}\right\}
\end{array}\right\rangle \\
& =\left\langle\left(\left(\widetilde{\Im}_{\beta_{1}} \widetilde{\Im}_{\beta_{2}}\right)\left(g_{1}\right) \widetilde{\vee} \widetilde{\gamma_{1}}\right) \widetilde{\wedge} \widetilde{\delta}_{1},\left(\left(\hbar_{\beta_{1}} \vee \hbar_{\beta_{2}}\right)\left(g_{1}\right) \wedge \gamma_{2}\right) \vee \delta_{2}\right\rangle,
\end{aligned}
$$

(iii)

$$
\begin{aligned}
& \beta_{1} \vee \vee^{*} \beta_{2}\left(g_{1}\right) \\
& =\left\langle\widetilde{\Im}_{\beta_{1} \vee * \beta_{2}}\left(g_{1}\right), \hbar_{\beta_{1} \wedge * \beta_{2}}\left(g_{1}\right)\right\rangle \\
& =\left\langle\begin{array}{c}
\left.r \min \left\{r \max \left\{\widetilde{\Im}_{\beta_{1}} \widetilde{\vee} \widetilde{\Im}_{\beta_{2}}\right)\left(g_{1}\right), \widetilde{\gamma}_{1}\right\}, \widetilde{\delta}_{1}\right\}, \\
\max \left\{\min \left\{\left(\hbar_{\beta_{1}} \wedge \hbar_{\beta_{2}}\right)\left(g_{1}\right), \gamma_{2}\right\}, \delta_{2}\right\}
\end{array}\right\rangle \\
& =\left\langle\left(\left(\widetilde{\Im}_{\beta_{1}} \widetilde{\vee} \widetilde{\Im}_{\beta_{2}}\right)\left(g_{1}\right) \widetilde{\vee} \widetilde{\gamma_{1}}\right) \widetilde{\wedge} \widetilde{\delta}_{1},\left(\left(\hbar_{\beta_{1}} \wedge \hbar_{\beta_{2}}\right)\left(g_{1}\right) \wedge \gamma_{2}\right) \vee \delta_{2}\right\rangle,
\end{aligned}
$$

(iv)

$$
\begin{aligned}
& \beta_{1} \circ * \beta_{2}\left(g_{1}\right) \\
& =\left\langle\widetilde{\Im}_{\beta_{1} \circ *_{\beta_{2}}}\left(g_{1}\right), \hbar_{\beta_{1} \circ * \beta_{2}}\left(g_{1}\right)\right\rangle \\
& =\left\langle\begin{array}{c}
r \min \left\{r \max \left\{\left(\widetilde{\Im}_{\beta_{1}} \widetilde{\widetilde{\Im}_{\beta_{2}}}\right)\left(g_{1}\right), \widetilde{\gamma_{1}}\right\}, \widetilde{\left.\delta_{1}\right\},}\right. \\
\max \left\{\min \left\{\left(\hbar_{\beta_{1}} \circ \hbar_{\beta_{2}}\right)\left(g_{1}\right), \gamma_{2}\right\}, \delta_{2}\right\}
\end{array}\right\rangle \\
& =\left\langle\left(\left(\widetilde{\Im}_{\beta_{1}} \widetilde{\widetilde{\Im}} \widetilde{\Im}_{\beta_{2}}\right)\left(g_{1}\right) \widetilde{\vee} \widetilde{\gamma_{1}}\right) \widetilde{\wedge} \widetilde{\delta}_{1},\left(\left(\hbar_{\beta_{1}} \circ \hbar_{\beta_{2}}\right)\left(g_{1}\right) \wedge \gamma_{2}\right) \vee \delta_{2}\right\rangle,
\end{aligned}
$$

where $\widetilde{\delta_{1}}, \widetilde{\gamma_{1}} \in D(0,1]$ such that $\widetilde{\gamma_{1}} \prec \widetilde{\delta_{1}}$ and $\delta_{2}, \gamma_{2} \in[0,1)$ such that $\delta_{2}<\gamma_{2}$.

Here we prove a lemma which will be very helpful.
Lemma 4.2. For and two cubic sets $\beta_{1}=\left\langle\widetilde{\Im}_{\beta_{1}}, \hbar_{\beta_{1}}\right\rangle$ and $\beta_{2}=\left\langle\widetilde{\Im}_{\beta_{2}}, \hbar_{\beta_{2}}\right\rangle$ of S, the following assertion are true,
(i) $\beta_{1} \wedge^{*} \beta_{2}=\beta_{1}^{*} \wedge \beta_{2}^{*}$.
(ii) $\beta_{1} \vee^{*} \beta_{2}=\beta_{1}^{*} \vee \beta_{2}^{*}$.
(iii) $\beta_{1} \circ{ }^{*} \beta_{2}=\beta_{1}^{*} \circ \beta_{2}^{*}$.

Lemma 4.3. Let R_{5} and R_{4} be any two non-empty subsets of S. Then the accompanying statements are valid,
(i) $\varkappa_{\Gamma}^{\Delta} R_{5} \wedge^{*} \varkappa_{\Gamma}^{\Delta} R_{4}=\varkappa_{\Gamma}^{* \Delta} R_{5} \cap R_{4}$,
(ii) $\varkappa_{\Gamma}^{\Delta} R_{5} \vee^{*} \varkappa_{\Gamma}^{\Delta} R_{4}=\varkappa_{\Gamma}^{* \Delta} R_{5} \cup R_{4}$,
(iii) $\varkappa_{\Gamma}^{\Delta} R_{5} \circ * \varkappa_{\Gamma}^{\Delta} R_{4}=\varkappa_{\Gamma}^{* \Delta} R_{5} \circ R_{4}$.

Lemma 4.4. Every $\left(\epsilon_{\Gamma}, \epsilon_{\Gamma} \vee \boldsymbol{q} \boldsymbol{\Delta}\right)$-cubic ideal $\beta_{1}=\left\langle\widetilde{\Im}_{\beta_{1}}, \hbar_{\beta_{1}}\right\rangle$ of S with left identity is idempotent.

Proof. Let $\beta_{1}=\left\langle\widetilde{\Im}_{\beta_{1}}, \hbar_{\beta_{1}}\right\rangle$ be an $\left(\epsilon_{\Gamma}, \epsilon_{\Gamma} \vee \boldsymbol{q} \boldsymbol{\Delta}\right)$-cubic ideal of an intra-regular $\mathcal{A} \mathcal{G}$-groupoid S with left identity. Since S is intra-regular so for each $g_{1} \in S$ there exist $l_{1}, l_{2} \in S$ such that $g_{1}=\left(l_{1} g_{1}^{2}\right) l_{2}$. Now, as

$$
g_{1}=\left(l_{1} g_{1}^{2}\right) l_{2}=\left(l_{1}\left(g_{1} g_{1}\right)\right) l_{2}=\left(g_{1}\left(l_{1} g_{1}\right)\right) l_{2}=g_{1}^{2}\left(l_{1} l_{2}\right)=\left(l_{2}\left(l_{1} g_{1}\right)\right) g_{1} .
$$

Consider,

$$
\begin{aligned}
& \widetilde{\Im}_{\beta_{1} \circ \beta_{1}}\left(g_{1}\right)=\left(\left(\widetilde{\Im}_{\beta_{1}} \widetilde{\circ} \widetilde{\Im}_{\beta_{1}}\right)\left(g_{1}\right) \widetilde{V} \widetilde{\gamma_{1}}\right) \widetilde{\wedge} \widetilde{\delta_{1}} \\
& =\left(\left(\operatorname{rsup}_{g_{1}=p_{1} \circ p_{2}}\left\{\widetilde{\Im}_{\beta_{1}}\left(p_{1}\right) \widetilde{\wedge} \widetilde{\Im}_{\beta_{1}}\left(p_{2}\right)\right\}\right) \widetilde{\vee} \widetilde{\gamma_{1}}\right) \widetilde{\wedge} \widetilde{\delta_{1}} \\
& \succeq\left(\left\{\widetilde{\Im}_{\beta_{1}}\left(l_{2}\left(l_{1} g_{1}\right)\right) \widetilde{\wedge} \widetilde{\Im}_{\beta_{1}}\left(g_{1}\right)\right\} \widetilde{\vee} \widetilde{\gamma_{1}}\right) \widetilde{\wedge} \widetilde{\delta}_{1} \\
& =\left\{\left(\widetilde{\Im}_{\beta_{1}}\left(l_{2}\left(l_{1} g_{1}\right)\right) \widetilde{\vee} \widetilde{\gamma}_{1}\right) \widetilde{\wedge}\left(\widetilde{\Im}_{\beta_{1}}\left(g_{1}\right) \widetilde{\vee} \widetilde{\gamma_{1}}\right)\right\} \widetilde{\wedge} \widetilde{\delta_{1}} \\
& \succeq \quad\left(\left\{\left(\widetilde{\Im}_{\beta_{1}}\left(g_{1}\right) \widetilde{\wedge} \widetilde{\delta_{1}}\right) \widetilde{\wedge}\left(\widetilde{\Im}_{\beta_{1}}\left(g_{1}\right) \widetilde{\wedge} \widetilde{\delta_{1}}\right)\right\} \widetilde{\wedge} \widetilde{\delta_{1}}\right) \widetilde{\vee} \widetilde{\gamma}_{1} \\
& =\left(\left(\left(\widetilde{\Im}_{\beta_{1}}\left(g_{1}\right) \widetilde{\wedge} \widetilde{\Im}_{\beta_{1}}\left(g_{1}\right)\right) \widetilde{\vee} \widetilde{\gamma_{1}}\right) \widetilde{\wedge} \widetilde{\delta_{1}}\right. \\
& =\widetilde{\Im}_{\beta_{1}^{*}} \tilde{\Im}_{\beta_{1}^{*}}\left(g_{1}\right) \\
& =\widetilde{\Im}_{\beta_{1}^{*}}\left(g_{1}\right) \text {, }
\end{aligned}
$$

and

$$
\begin{aligned}
\hbar_{\beta_{1} \circ * \beta_{1}}\left(g_{1}\right) & =\left(\left(\hbar_{\beta_{1}} \circ \hbar_{\beta_{1}}\right)\left(g_{1}\right) \wedge \gamma_{2}\right) \vee \delta_{2} \\
& =\left(\left(\inf _{g_{1}=p_{\circ} \circ p_{2}}\left\{\hbar_{\beta_{1}}\left(p_{1}\right) \vee \hbar_{\beta_{1}}\left(p_{2}\right)\right\}\right) \wedge \gamma_{2}\right) \vee \delta_{2} \\
& \leq\left\{\left(\hbar_{\beta_{1}}\left(l_{2}\left(l_{1} g_{1}\right) \vee \hbar_{\beta_{1}}\left(g_{1}\right)\right) \wedge \gamma_{2}\right) \vee \delta_{2}\right. \\
& =\left\{\left(\hbar_{\beta_{1}}\left(g_{1}(v u) \wedge \gamma_{2}\right) \vee\left(\hbar_{\beta_{1}}\left(g_{1} l_{1}\right) \wedge \gamma_{2}\right) \vee \delta_{2}\right.\right. \\
& \leq\left(\hbar_{\beta_{1}}\left(g_{1}\right) \vee \delta_{2}\right) \vee\left(\hbar_{\beta_{1}}\left(g_{1}\right) \vee \delta_{2}\right) \wedge \gamma_{2} \\
& =\left(\left(\hbar_{\beta_{1}}\left(g_{1}\right) \vee \hbar_{\beta_{1}}\left(g_{1}\right)\right) \wedge \gamma_{2}\right) \vee \delta_{2} \\
& =\left(\left(\left(\hbar_{\beta_{1}} \vee \hbar_{\beta_{1}}\right)\left(g_{1}\right)\right) \wedge \gamma_{2}\right) \vee \delta_{2} \\
& =\left(\hbar_{\beta_{1}^{*}} \vee \hbar_{\beta_{1}^{*}}\right)\left(g_{1}\right) \\
& =\hbar_{\beta_{1}^{*}}\left(g_{1}\right) .
\end{aligned}
$$

So, $\beta_{1} \circ^{*} \beta_{1}\left(g_{1}\right)=\left\langle\widetilde{\Im}_{\beta_{1} \circ * \beta_{1}}\left(g_{1}\right) \succeq\left(\widetilde{\Im}_{\beta_{1}^{*}}\left(g_{1}\right), \hbar_{\beta_{1} \circ * \beta_{1}}\left(g_{1}\right) \leq \hbar_{\beta_{1}^{*}}\left(g_{1}\right)\right\rangle \supseteq \beta_{1}\right.$.
Also,

$$
\begin{aligned}
\widetilde{\Im}_{\beta_{1} \circ * \beta_{1}}\left(g_{1}\right) & =\left(\left(\widetilde{\Im}_{\beta_{1}} \widetilde{\Im}_{\beta_{1}}\right)\left(g_{1}\right) \widetilde{\vee} \widetilde{\gamma}_{1}\right) \widetilde{\wedge} \widetilde{\delta}_{1} \\
& =\left(\left(\operatorname{rsup}_{g_{1}=p_{1} \circ p_{2}}\left\{\widetilde{\Im}_{\beta_{1}}\left(p_{1}\right) \widetilde{\wedge} \widetilde{\Im}_{\beta_{1}}\left(p_{2}\right)\right\}\right) \widetilde{\vee} \widetilde{\gamma_{1}}\right) \widetilde{\wedge} \widetilde{\delta}_{1} \\
& \preceq \operatorname{rsup}_{g_{1}=p_{1} \circ p_{2}}\left(\widetilde{\Im}_{\beta_{1}}\left(p_{1} p_{2}\right) \widetilde{\wedge} \widetilde{\delta}_{1}\right) \widetilde{\wedge}\left(\widetilde{\Im}_{\beta_{1}}\left(p_{1} p_{2}\right) \widetilde{\wedge} \widetilde{\delta_{1}}\right) \widetilde{\vee} \widetilde{\gamma}_{1} \\
& =\widetilde{\Im}_{\beta_{1}^{*} \wedge} \widetilde{\Im}_{\beta_{1}^{*}}\left(g_{1}\right) \\
& =\widetilde{\Im}_{\beta_{1}^{*}}\left(g_{1}\right),
\end{aligned}
$$

and on the other hand,

$$
\begin{aligned}
\hbar_{\beta_{1} \circ * \beta_{1}}\left(g_{1}\right) & =\left(\left(\hbar_{\beta_{1}} \circ \hbar_{\beta_{1}}\right)\left(g_{1}\right) \wedge \gamma_{2}\right) \vee \delta_{2} \\
& =\left(\left(\inf _{g_{1}=p_{1} \circ p_{2}}\left\{\hbar_{\beta_{1}}\left(p_{1}\right) \vee \hbar_{\beta_{1}}\left(p_{2}\right)\right\}\right) \wedge \gamma_{2}\right) \vee \delta_{2} \\
& \geq \inf _{g_{1}=p_{1} \circ p_{2}}\left(\hbar_{\beta_{1}}\left(p_{1} p_{2}\right) \vee \delta_{2}\right) \vee\left(\hbar_{\beta_{1}}\left(p_{1} p_{2}\right) \vee \delta_{2}\right) \wedge \gamma_{2} \\
& =\hbar_{\beta_{1}^{*} \vee \hbar_{\beta_{1}^{*}}\left(g_{1}\right)} \\
& =\hbar_{\beta_{1}^{*}}\left(g_{1}\right) .
\end{aligned}
$$

So, $\beta_{1} \circ * \beta_{1}\left(g_{1}\right)=\left\langle\widetilde{\Im}_{\beta_{1} \circ * \beta_{1}}\left(g_{1}\right) \preceq\left(\widetilde{\Im}_{\beta_{1}^{*}}\right)\left(g_{1}\right), \hbar_{\beta_{1} \circ * \beta_{1}}\left(g_{1}\right) \geq\left(\hbar_{\beta_{1}^{*}}\right)\left(g_{1}\right)\right\rangle \subseteq \beta_{1}$. Hence, $\beta_{1}=$ $\beta_{1}{ }^{*} \beta_{1}$.

Theorem 4.3. Let $\beta_{1}=\left\langle\widetilde{\Im}_{\beta_{1}}, \hbar_{\beta_{1}}\right\rangle$ be a cubic set of S with left identity, the accompanying conditions are comparable,
(i) S is intra-regular.
(ii) $\beta_{1} \wedge^{*} \beta_{2}=\beta_{1} \circ^{*} \beta_{2}$ for all $\left(\epsilon_{\Gamma}, \in_{\Gamma} \vee \boldsymbol{q} \boldsymbol{\Delta}\right)$-cubic quasi ideals $\beta_{1}=\left\langle\widetilde{\Im}_{\beta_{1}}, \hbar_{\beta_{1}}\right\rangle$ and $\beta_{2}=\left\langle\widetilde{\Im}_{\beta_{2}}, \hbar_{\beta_{2}}\right\rangle$ of S.

Proof. (i) \Rightarrow (ii)
Let $\beta_{1}=\left\langle\widetilde{\Im}_{\beta_{1}}, \hbar_{\beta_{1}}\right\rangle$ and $\beta_{2}=\left\langle\widetilde{\Im}_{\beta_{2}}, \hbar_{\beta_{2}}\right\rangle$ be $\left(\epsilon_{\Gamma}, \epsilon_{\Gamma} \vee \boldsymbol{q} \boldsymbol{\Delta}\right)$-cubic quasi ideals of an intra-regular $\mathcal{A G}$-groupoid S with left identity. Then by Theorem 4.2, $\beta_{1}=\left\langle\widetilde{\Im}_{\beta_{1}}, \hbar_{\beta_{1}}\right\rangle$ and $\beta_{2}=\left\langle\widetilde{\Im}_{\beta_{2}}, \hbar_{\beta_{2}}\right\rangle$ become ($\epsilon_{\Gamma}, \in_{\Gamma} \vee \boldsymbol{q} \boldsymbol{\Delta}$)-cubic ideals of S. Since S is intra-regular so for each $g_{1} \in S$ there exist $l_{1}, l_{2} \in S$ such that $g_{1}=\left(l_{1} g_{1}^{2}\right) l_{2}$. Now, as

$$
g_{1}=\left(l_{1} g_{1}^{2}\right) l_{2}=\left(l_{1}\left(g_{1} g_{1}\right)\right) l_{2}=\left(g_{1}\left(l_{1} g_{1}\right)\right) l_{2}=g_{1}^{2}\left((v u) l_{1}\right)=\left(l_{2}\left(l_{1} g_{1}\right)\right) g_{1} .
$$

As $\beta_{1} \circ^{*} \beta_{2}\left(g_{1}\right)=\left\langle\widetilde{\Im}_{\beta_{1} \circ * \beta_{2}}\left(g_{1}\right), \hbar_{\beta_{1} \circ * \beta_{2}}\left(g_{1}\right)\right\rangle$.
Consider first,

$$
\begin{aligned}
\widetilde{\Im}_{\beta_{1} \circ * \beta_{2}}\left(g_{1}\right) & =\left(\left(\widetilde{\Im}_{\beta_{1}} \widetilde{\circ} \widetilde{\Im}_{\beta_{2}}\right)\left(g_{1}\right) \widetilde{\vee} \widetilde{\gamma_{1}}\right) \widetilde{\wedge} \widetilde{\delta}_{1} \\
& =\left(\left(\operatorname{rrup}_{g_{1}=p_{1} \circ p_{2}}\left\{\widetilde{\Im}_{\beta_{1}}\left(p_{1}\right) \widetilde{\wedge} \widetilde{\Im}_{\beta_{2}}\left(p_{2}\right)\right\}\right) \widetilde{\vee} \widetilde{\gamma_{1}}\right) \widetilde{\wedge} \widetilde{\delta_{1}} \\
& \succeq\left(\left\{\widetilde{\Im}_{\beta_{1}}\left(l_{2}\left(l_{1} g_{1}\right)\right) \widetilde{\wedge} \widetilde{\Im}_{\beta_{2}}\left(g_{1}\right)\right\} \widetilde{\vee} \widetilde{\gamma_{1}}\right) \widetilde{\wedge} \widetilde{\delta_{1}} \\
& =\left\{\left(\left(\widetilde{\Im}_{\beta_{1}}\left(l_{2}\left(l_{1} g_{1}\right)\right) \widetilde{\vee} \widetilde{\gamma_{1}}\right) \widetilde{\wedge}\left(\widetilde{\Im}_{\beta_{2}}\left(g_{1}\right) \widetilde{\vee} \widetilde{\gamma_{1}}\right)\right\} \widetilde{\wedge} \widetilde{\delta_{1}}\right. \\
& \succeq\left(\left\{\left(\widetilde{\Im}_{\beta_{1}}\left(g_{1}\right) \widetilde{\wedge} \widetilde{\left.\delta_{1}\right)} \widetilde{\wedge}\left(\widetilde{\Im}_{\beta_{2}}\left(g_{1}\right) \widetilde{\wedge} \widetilde{\delta_{1}}\right)\right\} \widetilde{\wedge} \widetilde{\delta_{1}}\right) \widetilde{\vee} \widetilde{\widetilde{\gamma}_{1}}\right. \\
& =\left(\left(\left(\widetilde{\Im}_{\beta_{1}}\left(g_{1}\right) \widetilde{\wedge} \widetilde{\Im}_{\beta_{2}}\left(g_{1}\right)\right) \widetilde{\vee} \widetilde{\gamma_{1}}\right) \widetilde{\wedge} \widetilde{\delta_{1}}\right. \\
& =\widetilde{\Im}_{\beta_{1}^{*}} \widetilde{\wedge} \widetilde{\Im}_{\beta_{2}^{*}}\left(g_{1}\right),
\end{aligned}
$$

and on the other hand,

$$
\begin{aligned}
\hbar_{\beta_{1} \circ * \beta_{2}}\left(g_{1}\right) & =\left(\left(\hbar_{\beta_{1}} \circ \hbar_{\beta_{2}}\right)\left(g_{1}\right) \wedge \gamma_{2}\right) \vee \delta_{2} \\
& \left.=\left(\inf _{g_{1}=p_{1} \circ p_{2}}\left\{\hbar_{\beta_{1}}\left(p_{1}\right) \vee \hbar_{\beta_{2}}\left(p_{2}\right)\right\}\right) \wedge \gamma_{2}\right) \vee \delta_{2} \\
& \leq\left\{\left(\hbar_{\beta_{1}}\left(l_{2}\left(l_{1} g_{1}\right) \vee \hbar_{\beta_{2}}\left(g_{1}\right)\right) \wedge \gamma_{2}\right) \vee \delta_{2}\right. \\
& =\left\{\left(\hbar_{\beta_{1}}\left(g_{1}(v u) \wedge \gamma_{2}\right) \vee\left(\hbar_{\beta_{2}}\left(g_{1} l_{1}\right) \wedge \gamma_{2}\right) \vee \delta_{2}\right.\right. \\
& \leq\left(\hbar_{\beta_{1}}\left(g_{1}\right) \vee \delta_{2}\right) \vee\left(\hbar_{\beta_{2}}\left(g_{1}\right) \vee \delta_{2}\right) \wedge \gamma_{2} \\
& =\left(\left(\hbar_{\beta_{1}}\left(g_{1}\right) \vee \hbar_{\beta_{2}}\left(g_{1}\right)\right) \wedge \gamma_{2}\right) \vee \delta_{2} \\
& \left.=\left(\left(\hbar_{\beta_{1}} \vee \hbar_{\beta_{2}}\right)\left(g_{1}\right)\right) \wedge \gamma_{2}\right) \vee \delta_{2} \\
& =\left(\hbar_{\beta_{1}^{*}} \vee \hbar_{\beta_{2}^{*}}\right)\left(g_{1}\right) .
\end{aligned}
$$

So,

$$
\begin{aligned}
& \beta_{1} \circ^{*} \beta_{2}\left(g_{1}\right) \\
& =\left\langle\widetilde{\Im}_{\beta_{1} \circ * \beta_{2}}\left(g_{1}\right) \succeq\left(\widetilde{\Im}_{\beta_{1}^{*}} \widetilde{\wedge} \widetilde{\Im}_{\beta_{2}^{*}}\right)\left(g_{1}\right), \hbar_{\beta_{1} \circ * \beta_{2}}\left(g_{1}\right) \leq\left(\hbar_{\beta_{1}^{*}} \vee \hbar_{\beta_{2}^{*}}\right)\left(g_{1}\right)\right\rangle \\
& \supseteq \beta_{1} \wedge^{*} \beta_{2} .
\end{aligned}
$$

Also,

$$
\begin{aligned}
\widetilde{\Im}_{\beta_{1} \circ * \beta_{2}}\left(g_{1}\right) & =\left(\left(\widetilde{\Im}_{\beta_{1}} \widetilde{\Im}_{\beta_{2}}\right)\left(g_{1}\right) \widetilde{\vee} \widetilde{\gamma}_{1}\right) \widetilde{\wedge} \widetilde{\delta}_{1} \\
& =\left(\left(\operatorname{rsup}_{g_{1}=p_{1} \circ p_{2}}\left\{\widetilde{\Im}_{\beta_{1}}\left(p_{1}\right) \widetilde{\wedge} \widetilde{\Im}_{\beta_{2}}\left(p_{2}\right)\right\}\right) \widetilde{\vee} \widetilde{\gamma}_{1}\right) \widetilde{\wedge} \widetilde{\delta}_{1} \\
& \preceq \operatorname{rsup}_{g_{1}=p_{1} \circ p_{2}}\left(\widetilde{\Im}_{\beta_{1}}\left(p_{1} p_{2}\right) \widetilde{\wedge} \widetilde{\delta}_{1}\right) \widetilde{\wedge}\left(\widetilde{\Im}_{\beta_{2}}\left(p_{1} p_{2}\right) \widetilde{\wedge} \widetilde{\delta_{1}}\right) \widetilde{\vee} \widetilde{\gamma_{1}} \\
& =\widetilde{\Im}_{\beta_{1}^{*}} \widetilde{\wedge} \widetilde{\Im}_{\beta_{2}^{*}}\left(g_{1}\right),
\end{aligned}
$$

and on the other hand,

$$
\begin{aligned}
\hbar_{\beta_{1} \circ * \beta_{2}}\left(g_{1}\right) & =\left(\left(\hbar_{\beta_{1}} \circ \hbar_{\beta_{2}}\right)\left(g_{1}\right) \wedge \gamma_{2}\right) \vee \delta_{2} \\
& =\left(\left(\inf _{g_{1}=p_{1} \circ p_{2}}\left\{\hbar_{\beta_{1}}\left(p_{1}\right) \vee \hbar_{\beta_{2}}\left(p_{2}\right)\right\}\right) \wedge \gamma_{2}\right) \vee \delta_{2} \\
& \geq \inf _{g_{1}=p_{1} \circ p_{2}}\left(\hbar_{\beta_{1}}\left(p_{1} p_{2}\right) \vee \delta_{2}\right) \vee\left(\hbar_{\beta_{2}}\left(p_{1} p_{2}\right) \vee \delta_{2}\right) \wedge \gamma_{2} \\
& =\hbar_{\beta_{1}^{*}} \vee \hbar_{\beta_{2}^{*}}\left(g_{1}\right) .
\end{aligned}
$$

So,

$$
\begin{aligned}
& \beta_{1} \circ^{*} \beta_{2}\left(g_{1}\right) \\
& =\left\langle\widetilde{\Im}_{\beta_{1} \circ * \beta_{2}}\left(g_{1}\right) \preceq\left(\widetilde{\Im}_{\beta_{1}^{*}} \widetilde{\wedge} \widetilde{\Im}_{\beta_{2}^{*}}\right)\left(g_{1}\right), \hbar_{\beta_{1} \circ * \beta_{2}}\left(g_{1}\right) \geq\left(\hbar_{\beta_{1}^{*}} \vee \hbar_{\beta_{2}^{*}}\right)\left(g_{1}\right)\right\rangle \\
& \subseteq \beta_{1} \wedge^{*} \beta_{2} .
\end{aligned}
$$

Hence, $\beta_{1} \wedge^{*} \beta_{2}=\beta_{1} \circ^{*} \beta_{2}$.
(ii) \Rightarrow (i)

Let Q_{1} and Q_{2} are the quasi ideals of S with left identity and let $g_{1} \in Q_{1} \cap Q_{2}$. Then $\varkappa_{\Gamma}^{* \Delta} Q_{1}$ and $\varkappa_{\Gamma}^{* \Delta} Q_{2}$ are $\left(\epsilon_{\Gamma}, \in_{\Gamma} \vee \boldsymbol{q} \boldsymbol{\Delta}\right)$-cubic quasi ideals of S. Then, by hypothesis

$$
\varkappa_{\Gamma}^{* \Delta} Q_{1} Q_{2}=\varkappa_{\Gamma}^{\Delta} Q_{1} \circ^{*} \varkappa_{\Gamma}^{\Delta} Q_{2}=\varkappa_{\Gamma}^{\Delta} Q_{1} \wedge^{*} \varkappa_{\Gamma}^{\Delta} Q_{2}=\varkappa_{\Gamma}^{\Delta} Q_{1} \cap Q_{2} .
$$

Thus, $Q_{1} Q_{2}=Q_{1} \cap Q_{2}$. Hence, S is intra-regular by Theorem 2.1.
Theorem 4.4. Let $\beta_{1}=\left\langle\widetilde{\Im}_{\beta_{1}}, \hbar_{\beta_{1}}\right\rangle$ be a cubic set of S with left identity, the accompanying conditions are comparable,
(i) S is intra-regular.
(ii) $\beta_{1} \wedge^{*} \beta_{2} \subseteq \beta_{1} \circ^{*} \beta_{2}$ for all $\left(\epsilon_{\Gamma}, \in_{\Gamma} \vee \boldsymbol{q} \boldsymbol{\Delta}\right)$-cubic left ideal $\beta_{1}=\left\langle\widetilde{\Im}_{\beta_{1}}, \hbar_{\beta_{1}}\right\rangle$ and every $\left(\epsilon_{\Gamma}, \in_{\Gamma}\right.$ $\vee \boldsymbol{q} \boldsymbol{\Delta})$-cubic right ideal $\beta_{2}=\left\langle\widetilde{\Im}_{\beta_{2}}, \hbar_{\beta_{2}}\right\rangle$ of S.

Proof. Straightforward.
Theorem 4.5. Let $\beta_{1}=\left\langle\widetilde{\Im}_{\beta_{1}}, \hbar_{\beta_{1}}\right\rangle$ be a cubic set of S with left identity, the following conditions are equivalent.
(i) S is intra-regular.
(ii) $\beta_{1} \wedge^{*} \beta_{2}=\beta_{1} \circ^{*} \beta_{2}$ for any $\left(\epsilon_{\Gamma}, \in_{\Gamma} \vee \boldsymbol{q} \boldsymbol{\Delta}\right)$-cubic quasi ideal $\beta_{1}=\left\langle\widetilde{\Im}_{\beta_{1}}, \hbar_{\beta_{1}}\right\rangle$ and any $\left(\epsilon_{\Gamma}, \epsilon_{\Gamma} \vee \boldsymbol{q} \boldsymbol{\Delta}\right)$-cubic left ideal $\beta_{2}=\left\langle\widetilde{\Im}_{\beta_{2}}, \hbar_{\beta_{2}}\right\rangle$ of S.
(iii) $\beta_{1} \wedge^{*} \beta_{2}=\beta_{1} \circ^{*} \beta_{2}$ for all $\left(\epsilon_{\Gamma}, \in_{\Gamma} \vee \boldsymbol{q} \boldsymbol{\Delta}\right)$-cubic quasi ideals $\beta_{1}=\left\langle\widetilde{\Im}_{\beta_{1}}, \hbar_{\beta_{1}}\right\rangle$ and $\beta_{2}=$ $\left\langle\widetilde{\Im}_{\beta_{2}}, \hbar_{\beta_{2}}\right\rangle$ of S.

Proof. It follows from the proof of the Theorem 4.3.
Theorem 4.6. Let $\beta_{1}=\left\langle\widetilde{\Im}_{\beta_{1}}, \hbar_{\beta_{1}}\right\rangle$ be a cubic set of S with left identity, the following conditions are equivalent.
(i) S is intra-regular.
(ii) $\beta_{1} \wedge^{*} \beta_{2} \subseteq \beta_{1} \circ^{*} \beta_{2}$ for any $\left(\epsilon_{\Gamma}, \epsilon_{\Gamma} \vee \boldsymbol{q} \boldsymbol{\Delta}\right)$-cubic quasi ideal $\beta_{1}=\left\langle\widetilde{\Im}_{\beta_{1}}, \hbar_{\beta_{1}}\right\rangle$ and any $\left(\epsilon_{\Gamma}, \in_{\Gamma} \vee \boldsymbol{q} \boldsymbol{\Delta}\right)$-cubic left ideal $\beta_{2}=\left\langle\widetilde{\Im}_{\beta_{2}}, \hbar_{\beta_{2}}\right\rangle$ of S.
(iii) $\beta_{1} \wedge^{*} \beta_{2} \subseteq \beta_{1} \circ^{*} \beta_{2}$ for all $\left(\epsilon_{\Gamma}, \in_{\Gamma} \vee \boldsymbol{q} \boldsymbol{\Delta}\right)$-cubic quasi ideals $\beta_{1}=\left\langle\widetilde{\Im}_{\beta_{1}}, \hbar_{\beta_{1}}\right\rangle$ and $\beta_{2}=$ $\left\langle\widetilde{\Im}_{\beta_{2}}, \hbar_{\beta_{2}}\right\rangle$ of S.

Proof. It follows from the proof of the Theorem 4.3.
Theorem 4.7. Let $\beta_{1}=\left\langle\widetilde{\Im}_{\beta_{1}}, \hbar_{\beta_{1}}\right\rangle$ be a cubic set of S with left identity, the following conditions are equivalent.
(i) S is intra-regular.
(ii) $\beta_{1} \wedge^{*} \beta_{2}=\left(\beta_{1} \circ^{*} \beta_{2}\right) \circ^{*} \beta_{1}$ for any $\left(\epsilon_{\Gamma}, \in_{\Gamma} \vee \boldsymbol{q} \boldsymbol{\Delta}\right)$-cubic left ideal $\beta_{1}=\left\langle\widetilde{\Im}_{\beta_{1}}, \hbar_{\beta_{1}}\right\rangle$ and any $\left(\epsilon_{\Gamma}, \epsilon_{\Gamma} \vee \boldsymbol{q} \boldsymbol{\Delta}\right)$-cubic quasi ideal $\beta_{2}=\left\langle\widetilde{\Im}_{\beta_{2}}, \hbar_{\beta_{2}}\right\rangle$ of S.
(iii) $\beta_{1} \wedge^{*} \beta_{2}=\left(\beta_{1} \circ^{*} \beta_{2}\right) \circ^{*} \beta_{1}$ for any $\left(\epsilon_{\Gamma}, \epsilon_{\Gamma} \vee \boldsymbol{q} \boldsymbol{\Delta}\right)$-cubic quasi ideals $\beta_{1}=\left\langle\widetilde{\Im}_{\beta_{1}}, \hbar_{\beta_{1}}\right\rangle$ and $\beta_{2}=\left\langle\widetilde{\Im}_{\beta_{2}}, \hbar_{\beta_{2}}\right\rangle$ of S.

Proof. (i) \Rightarrow (iii)
Let $\beta_{1}=\left\langle\widetilde{\Im}_{\beta_{1}}, \hbar_{\beta_{1}}\right\rangle$ and $\beta_{2}=\left\langle\widetilde{\Im}_{\beta_{2}}, \hbar_{\beta_{2}}\right\rangle$ be $\left(\epsilon_{\Gamma}, \epsilon_{\Gamma} \vee \boldsymbol{q} \boldsymbol{\Delta}\right)$-cubic quasi ideals of an intra-regular $\mathcal{A G}$-groupoid S with left identity. Then, by Theorem 4.2, $\beta_{1}=\left\langle\widetilde{\Im}_{\beta_{1}}, \hbar_{\beta_{1}}\right\rangle$ and $\beta_{2}=\left\langle\widetilde{\Im}_{\beta_{2}}, \hbar_{\beta_{2}}\right\rangle$ become $\left(\epsilon_{\Gamma}, Є_{\Gamma} \vee \boldsymbol{q} \boldsymbol{\Delta}\right)$-cubic ideals of S. Since S is intra-regular so for each $g_{1} \in S$, there exist $l_{1}, l_{2} \in S$ such that $g_{1}=\left(l_{1} g_{1}^{2}\right) l_{2}$.
Now as

$$
\begin{aligned}
g_{1} & =\left(l_{1} g_{1}^{2}\right) l_{2}=\left(l_{1}\left(g_{1} g_{1}\right)\right) l_{2}=\left(g_{1}\left(l_{1} g_{1}\right)\right) l_{2}=g_{1}^{2}\left((v u) l_{1}\right) \\
& =\left(l_{2}\left(l_{1} g_{1}\right)\right) g_{1}=\left(l_{2}\left(l_{1} g_{1}\right)\right)\left(\left(l_{2}\left(l_{1} g_{1}\right)\right) g_{1}\right)=\left(g_{1}\left(l_{2}\left(l_{1} g_{1}\right)\right)\right)\left(\left(l_{1} g_{1}\right) l_{2}\right)
\end{aligned}
$$

Now, we consider

$$
\begin{aligned}
\widetilde{\Im}_{\left(\beta_{1} \circ * \beta_{2}\right) 0 * \beta_{1}}\left(g_{1}\right) & =\left(\left(\left(\widetilde{\Im}_{\beta_{1}} \widetilde{\circ} \widetilde{\Im}_{\beta_{2}}\right) \widetilde{\circ} \widetilde{\Im}_{\beta_{1}}\right)\left(g_{1}\right) \widetilde{\vee} \widetilde{\gamma_{1}}\right) \widetilde{\wedge} \widetilde{\delta}_{1} \\
& =\left(\left(\operatorname{rimp}_{g_{1}=p_{1} p_{2}}\left\{\left(\widetilde{\Im}_{\beta_{1}} \widetilde{\Im}_{\beta_{2}}\right)\left(p_{1}\right) \widetilde{\wedge} \widetilde{\Im}_{\beta_{2}}\left(p_{2}\right)\right\}\right) \widetilde{\vee} \widetilde{\gamma_{1}}\right) \widetilde{\wedge} \widetilde{\delta}_{1} \\
& \succeq\left(\left\{\left(\widetilde{\Im}_{\beta_{1}} \widetilde{\Im_{\beta_{2}}}\right)\left(g_{1}\left(l_{2}\left(l_{1} g_{1}\right)\right)\right) \widetilde{\wedge} \widetilde{\Im}_{\beta_{2}}\left(g_{1}\right)\right\} \widetilde{\vee} \widetilde{\gamma_{1}}\right) \widetilde{\wedge} \widetilde{\delta_{1}} \\
& =\operatorname{rup}_{g_{1}\left(l_{2}\left(l_{1} g_{1}\right)\right)=u v}\left\{\widetilde{\Im}_{\beta_{1}}(u) \widetilde{\wedge} \widetilde{\Im}_{\beta_{2}}(v)\right\} \widetilde{\wedge} \widetilde{\Im}_{\beta_{2}}\left(g_{1}\right) \widetilde{\wedge} \widetilde{\delta}_{1} \\
& \succeq\left(\left\{\left(\widetilde{\Im}_{\beta_{1}}\left(g_{1}\right) \widetilde{\wedge} \widetilde{\delta}_{1}\right) \widetilde{\wedge}\left(\widetilde{\Im}_{\beta_{2}}\left(g_{1}\right) \widetilde{\wedge} \widetilde{\delta}_{1}\right)\right\} \widetilde{\Im}_{\beta_{2}}\left(g_{1}\right) \widetilde{\wedge} \widetilde{\delta_{1}}\right) \widetilde{\vee} \widetilde{\gamma_{1}} \\
& =\left(\left(\left(\widetilde{\Im}_{\beta_{1}}\left(g_{1}\right) \widetilde{\wedge} \widetilde{\Im}_{\beta_{2}}\left(g_{1}\right)\right) \widetilde{\vee} \widetilde{\gamma_{1}}\right) \widetilde{\wedge} \widetilde{\delta}_{1}\right. \\
& =\widetilde{\Im}_{\beta_{1}^{*}} \widetilde{\wedge} \widetilde{\Im}_{\beta_{2}^{*}}\left(g_{1}\right),
\end{aligned}
$$

on the other hand,

$$
\begin{aligned}
\hbar_{\left(\beta_{1} \circ * \beta_{2}\right) \circ * \beta_{1}}\left(g_{1}\right) & =\left(\left(\left(\hbar_{\beta_{1}} \circ \hbar_{\beta_{2}}\right) \circ \hbar_{\beta_{1}}\right)\left(g_{1}\right) \wedge \gamma_{2}\right) \vee \delta_{2} \\
& =\left(\left(\inf _{g_{1}=p_{1} p_{2}}\left\{\left(\hbar_{\beta_{1}} \circ \hbar_{\beta_{2}}\right)\left(p_{1}\right) \vee \hbar_{\beta_{2}}\left(p_{2}\right)\right\}\right) \wedge \gamma_{2}\right) \vee \delta_{2} \\
& \leq\left(\left\{\left(\hbar_{\beta_{1}} \circ \hbar_{\beta_{2}}\right)\left(g_{1}\left(l_{2}\left(l_{1} g_{1}\right)\right)\right) \vee \hbar_{\beta_{2}}\left(g_{1}\right)\right\} \wedge \gamma_{2}\right) \vee \delta_{2} \\
& =\inf _{g_{1}\left(l_{2}\left(l_{1} g_{1}\right)\right)=u v}\left\{\hbar_{\beta_{1}}(u) \vee \hbar_{\beta_{2}}(v)\right\} \vee \hbar_{\beta_{2}}\left(g_{1}\right) \vee \delta_{2} \\
& \leq\left(\left\{\left(\hbar_{\beta_{1}}\left(g_{1}\right) \vee \delta_{2}\right) \vee\left(\hbar_{\beta_{2}}\left(g_{1}\right) \vee \delta_{2}\right)\right\} \hbar_{\beta_{2}}\left(g_{1}\right) \vee \delta_{2}\right) \wedge \gamma_{2} \\
& =\left(\left(\left(\hbar_{\beta_{1}}\left(g_{1}\right) \vee \hbar_{\beta_{2}}\left(g_{1}\right)\right) \wedge \gamma_{2}\right) \vee \delta_{2}\right. \\
& =\hbar_{\beta_{1}^{*} * \hbar_{\beta_{2}^{*}}^{*}\left(g_{1}\right) .} .
\end{aligned}
$$

Thus,

$$
\begin{aligned}
& \left(\left(\beta_{1} \circ^{*} \beta_{2}\right) \circ * \beta_{1}\right)\left(g_{1}\right)= \\
& \left\langle\widetilde{\Im}_{\left(\beta_{1} \circ * \beta_{2}\right) \circ * \beta_{1}}\left(g_{1}\right) \succeq\left(\widetilde{\Im}_{\beta_{1}^{*}}^{*} \widetilde{\Im}_{\beta_{2}^{*}}\right)\left(g_{1}\right), \hbar_{\left(\beta_{1} \circ * \beta_{2}\right) \circ * \beta_{1}}\left(g_{1}\right) \leq\left(\hbar_{\beta_{1}^{*}} \vee \hbar_{\beta_{2}^{*}}\right)\left(g_{1}\right)\right\rangle \supseteq \beta_{1} \wedge * \beta_{2} .
\end{aligned}
$$

Now, for the reverse inclusion consider

$$
\begin{aligned}
& \widetilde{\Im}_{\left(\beta_{1} \circ * \beta_{2}\right) \circ * \beta_{1}}\left(g_{1}\right)=\left(\left(\left(\widetilde{\Im}_{\beta_{1}} \widetilde{\widetilde{\Im}} \vec{\beta}_{2}\right) \widetilde{\Im_{\beta_{1}}}\right)\left(g_{1}\right) \widetilde{\vee} \widetilde{\gamma_{1}}\right) \widetilde{\wedge} \widetilde{\delta_{1}} \\
& =\left(\left(\operatorname{rsup}_{g_{1}=p_{1} p_{2}}\left\{\left(\widetilde{\Im}_{\beta_{1}} \widetilde{\frown} \widetilde{\Im}_{\beta_{2}}\right)\left(p_{1}\right) \widetilde{\wedge} \widetilde{\Im}_{\beta_{2}}\left(p_{2}\right)\right\}\right) \widetilde{\vee} \widetilde{\gamma_{1}}\right) \widetilde{\wedge} \widetilde{\delta}_{1} \\
& =\left(\left(\operatorname{rsup}_{g_{1}=p_{1} p_{2}}\left\{\operatorname{rsup}_{p_{1}=l m}\left\{\widetilde{\Im}_{\beta_{1}}(l) \widetilde{\wedge} \widetilde{\Im}_{\beta_{2}}(m)\right\} \widetilde{\wedge} \widetilde{\Im}_{\beta_{2}}\left(p_{2}\right)\right\}\right) \widetilde{\vee} \widetilde{\gamma_{1}}\right) \widetilde{\wedge} \widetilde{\delta}_{1} \\
& \preceq \operatorname{rup}_{g_{1}=p_{1} p_{2}}\left\{\operatorname{rsup}_{p_{1}=l m} \widetilde{\Im}_{\beta_{1}}(l m) \widetilde{\wedge} \widetilde{\Im}_{\beta_{2}}(l m) \widetilde{\vee} \widetilde{\gamma_{1}}\right\} \widetilde{\wedge}\left(\widetilde{\Im}_{\beta_{2}}\left(p_{1} p_{2}\right) \widetilde{\vee} \widetilde{\gamma_{1}}\right) \widetilde{\wedge} \widetilde{\delta}_{1} \\
& =\operatorname{rsup}_{g_{1}=p_{1} p_{2}}\left\{\widetilde{\Im}_{\beta_{1}}\left(p_{1}\right) \widetilde{\wedge} \widetilde{\Im}_{\beta_{2}}\left(p_{2}\right) \widetilde{\vee} \widetilde{\gamma_{1}}\right\} \widetilde{\wedge}\left(\widetilde{\Im}_{\beta_{2}}\left(p_{1} p_{2}\right) \widetilde{\vee} \widetilde{\gamma_{1}}\right) \widetilde{\wedge} \widetilde{\delta}_{1} \\
& \preceq \operatorname{rup}_{g_{1}=p_{1} p_{2}}\left\{\widetilde{\Im}_{\beta_{1}}\left(p_{1} p_{2}\right) \widetilde{\wedge} \widetilde{\Im}_{\beta_{2}}\left(p_{1} p_{2}\right) \widetilde{\vee} \widetilde{\gamma_{1}}\right\} \widetilde{\wedge}\left(\widetilde{\Im}_{\beta_{2}}\left(p_{1} p_{2}\right) \widetilde{\vee} \widetilde{\gamma_{1}}\right) \widetilde{\wedge} \widetilde{\delta}_{1} \\
& =\left(\widetilde{\Im}_{\beta_{1}}\left(g_{1}\right) \widetilde{\wedge} \widetilde{\Im}_{\beta_{2}}\left(g_{1}\right) \widetilde{\wedge} \widetilde{\Im}_{\beta_{2}}\left(g_{1}\right)\right) \widetilde{\vee} \widetilde{\gamma_{1}} \widetilde{\wedge} \widetilde{\delta_{1}} \\
& =\left(\left(\left(\widetilde{\Im}_{\beta_{1}}\left(g_{1}\right) \widetilde{\wedge} \widetilde{\Im}_{\beta_{2}}\left(g_{1}\right)\right) \widetilde{\vee} \widetilde{\gamma_{1}}\right) \widetilde{\wedge} \widetilde{\delta_{1}}\right. \\
& =\widetilde{\Im}_{\beta_{1}^{*}} \widetilde{\wedge} \widetilde{\Im}_{\beta_{2}^{*}}\left(g_{1}\right),
\end{aligned}
$$

on the other hand,

$$
\begin{aligned}
\hbar_{\left(\beta_{1} \circ * \beta_{2}\right) \circ * \beta_{1}\left(g_{1}\right)} & =\left(\left(\left(\hbar_{\beta_{1}} \circ \hbar_{\beta_{2}}\right) \circ \hbar_{\beta_{1}}\right)\left(g_{1}\right) \wedge \gamma_{2}\right) \vee \delta_{2} \\
& =\left(\left(\inf _{g_{1}=p_{1} p_{2}}\left\{\left(\hbar_{\beta_{1}} \circ \hbar_{\beta_{2}}\right)\left(p_{1}\right) \vee \hbar_{\beta_{2}}\left(p_{2}\right)\right\}\right) \wedge \gamma_{2}\right) \vee \delta_{2} \\
& =\left(\left(\inf _{g_{1}=p_{1} p_{2}}\left\{\inf _{p_{1}=l m}\left\{\hbar_{\beta_{1}}(l) \vee \hbar_{\beta_{2}}(m)\right\} \vee \hbar_{\beta_{2}}\left(p_{2}\right)\right\}\right) \wedge \gamma_{2}\right) \vee \delta_{2} \\
& \geq \inf _{g_{1}=p_{1} p_{2}}\left\{\inf _{g_{1}=l m} \hbar_{\beta_{1}}(l m) \vee \hbar_{\beta_{2}}(l m) \wedge \gamma_{2}\right\} \vee\left(\hbar_{\beta_{2}}\left(p_{1} p_{2}\right) \wedge \gamma_{2}\right) \vee \delta_{2} \\
& =\inf _{g_{1}=p_{1} p_{2}}\left\{\hbar_{\beta_{1}}\left(p_{1}\right) \vee \hbar_{\beta_{2}}\left(p_{2}\right) \wedge \gamma_{2}\right\} \vee\left(\hbar_{\beta_{2}}\left(p_{1} p_{2}\right) \wedge \gamma_{2}\right) \vee \delta_{2} \\
& \geq \inf _{g_{1}=p_{1} p_{2}}\left\{\hbar_{\beta_{1}}\left(p_{1} p_{2}\right) \vee \hbar_{\beta_{2}}\left(p_{1} p_{2}\right) \wedge \gamma_{2}\right\} \vee\left(\hbar_{\beta_{2}}\left(p_{1} p_{2}\right) \wedge \gamma_{2}\right) \vee \delta_{2} \\
& =\left(\hbar_{\beta_{1}}\left(g_{1}\right) \vee \hbar_{\beta_{2}}\left(g_{1}\right) \vee \hbar_{\beta_{2}}\left(g_{1}\right)\right) \wedge \gamma_{2} \vee \delta_{2} \\
& =\left(\left(\left(\hbar_{\beta_{1}}\left(g_{1}\right) \vee \hbar_{\beta_{2}}\left(g_{1}\right)\right) \wedge \gamma_{2}\right) \vee \delta_{2}\right. \\
& =\hbar_{\beta_{1}^{*}} \vee \hbar_{\beta_{2}^{*}}\left(g_{1}\right) .
\end{aligned}
$$

Thus,

$$
\begin{aligned}
& \left(\left(\beta_{1} \circ * \beta_{2}\right) \circ^{*} \beta_{1}\right)\left(g_{1}\right)= \\
& \left\langle\widetilde{\Im}_{\left(\beta_{1} \circ * \beta_{2}\right) \circ * \beta_{1}}\left(g_{1}\right) \preceq\left(\widetilde{\Im}_{\beta_{1}^{*}} \widetilde{\Im_{\beta_{2}}^{*}}\right)\left(g_{1}\right), \hbar_{\left(\beta_{1} \circ * \beta_{2}\right) \circ * \beta_{1}}\left(g_{1}\right) \geq\left(\hbar_{\beta_{1}^{*}} \vee \hbar_{\beta_{2}^{*}}\right)\left(g_{1}\right)\right\rangle \supseteq \beta_{1} \wedge^{*} \beta_{2} .
\end{aligned}
$$

Hence, $\beta_{1} \wedge^{*} \beta_{2}=\left(\beta_{1} \circ^{*} \beta_{2}\right) \circ^{*} \beta_{1}$ for any $\left(\epsilon_{\Gamma}, \epsilon_{\Gamma} \vee \boldsymbol{q} \boldsymbol{\Delta}\right)$-cubic quasi ideals $\beta_{1}=\left\langle\widetilde{\Im}_{\beta_{1}}, \hbar_{\beta_{1}}\right\rangle$ and $\beta_{2}=\left\langle\widetilde{\Im}_{\beta_{2}}, \hbar_{\beta_{2}}\right\rangle$ of S.
(iii) \Rightarrow (ii) is obvious.
(ii) \Rightarrow (i)

Let R_{4} and R_{3} be the left and quasi ideal of S with left identity. Then $\varkappa_{\Gamma}^{* \Delta} R_{4}$ and $\varkappa_{\Gamma}^{* \Delta} R_{3}$ are $\left(\epsilon_{\Gamma}, \epsilon_{\Gamma} \vee \boldsymbol{q} \boldsymbol{\Delta}\right)$-cubic left and $\left(\epsilon_{\Gamma}, \in_{\Gamma} \vee \boldsymbol{q} \boldsymbol{\Delta}\right)$-cubic ideal of S. Then, by hypothesis,

$$
\varkappa_{\Gamma}^{* \Delta} R_{4} \cap R_{3}=\varkappa_{\Gamma}^{\Delta} R_{4} \wedge^{*} \varkappa_{\Gamma}^{\Delta} R_{3}=\left(\varkappa_{\Gamma}^{\Delta} R_{4} \circ^{*} \varkappa_{\Gamma}^{\Delta} R_{3}\right) \circ^{*} \varkappa_{\Gamma}^{\Delta} R_{4}=\varkappa_{\Gamma}^{\Delta}\left(R_{4} R_{3}\right) R_{4} .
$$

Thus, $\left(R_{4} R_{3}\right) R_{4}=R_{4} \cap R_{3}$. Hence, S is intra-regular by Theorem 2.4.
Theorem 4.8. Let $\beta_{1}=\left\langle\widetilde{\Im}_{\beta_{1}}, \hbar_{\beta_{1}}\right\rangle$ be a cubic set of S with left identity, the accompanying conditions are equal,
(i) S is intra-regular.
(ii) $\beta_{1} \wedge^{*} \beta_{2} \subseteq \beta_{1} \circ^{*} \beta_{2}$ for all $\left(\epsilon_{\Gamma}, \epsilon_{\Gamma} \vee \boldsymbol{q} \boldsymbol{\Delta}\right)$-cubic bi ideal $\beta_{1}=\left\langle\widetilde{\Im}_{\beta_{1}}, \hbar_{\beta_{1}}\right\rangle$ and $\left(\epsilon_{\Gamma}, \in_{\Gamma} \vee \boldsymbol{q} \boldsymbol{\Delta}\right)$ cubic quasi ideal $\beta_{2}=\left\langle\widetilde{\Im}_{\beta_{2}}, \hbar_{\beta_{2}}\right\rangle$ of S.

Proof. (i) \Rightarrow (ii)
Let $\beta_{1}=\left\langle\widetilde{\Im}_{\beta_{1}}, \hbar_{\beta_{1}}\right\rangle$ and $\beta_{2}=\left\langle\widetilde{\Im}_{\beta_{2}}, \hbar_{\beta_{2}}\right\rangle$ be $\left(\epsilon_{\Gamma}, \epsilon_{\Gamma} \vee \boldsymbol{q} \boldsymbol{\Delta}\right)$-cubic bi ideal and $\left(\epsilon_{\Gamma}, \epsilon_{\Gamma} \vee \boldsymbol{q} \boldsymbol{\Delta}\right)$ cubic quasi ideal of an intra-regular $\mathcal{A \mathcal { G }}$-groupoid S with left identity. Since S is intra-regular so for each $g_{1} \in S$ there exist $l_{1}, l_{2} \in S$ such that $g_{1}=\left(l_{1} g_{1}^{2}\right) l_{2}$, and $S=S^{2}$ so for $l_{2} \in S$ there exist $s, t \in S$ such that $l_{2}=s t$.

Now, as

$$
\begin{aligned}
g_{1} & =\left(l_{1} g_{1}^{2}\right) l_{2}=\left(l_{1}\left(g_{1} g_{1}\right)\right) l_{2}=\left(g_{1}\left(l_{1} g_{1}\right)\right) l_{2}=\left(l_{2}\left(l_{1} g_{1}\right)\right) g_{1} \\
& =\left[(s t)\left(l_{1} g_{1}\right)\right] g_{1}=\left[\left(g_{1} l_{1}\right)(t s)\right] g_{1}=\left[\left\{(t s) l_{1}\right\} g_{1}\right] g_{1}=\left[\left\{(t s) l_{1}\right\}\left(\left(l_{1} g_{1}^{2}\right) l_{2}\right)\right] g_{1} \\
& =\left[\left(l_{1} g_{1}^{2}\right)\left(\left\{(t s) l_{1}\right\} l_{2}\right)\right] g_{1}=\left[\left\{g_{1}\left(l_{1} g_{1}\right)\right\}\left(\left\{(t s) l_{1}\right\} l_{2}\right)\right] g_{1} \\
& =\left[\left\{\left(\left\{(t s) l_{1}\right\} l_{2}\right)\left(l_{1} g_{1}\right)\right\} g_{1}\right] g_{1} \\
& =\left[\left\{p_{1}\left(l_{1} g_{1}\right)\right\} g_{1}\right] g_{1}, \text { where } p_{1}=\left((t s) l_{1}\right) l_{2},
\end{aligned}
$$

and

$$
\begin{aligned}
p_{1}\left(l_{1} g_{1}\right) & =p_{1}\left[l_{1}\left\{\left(l_{1} g_{1}^{2}\right) l_{2}\right\}\right]=p_{1}\left[\left(l_{1} g_{1}^{2}\right)\left(l_{1} l_{2}\right)\right]=\left(l_{1} g_{1}^{2}\right)\left[p_{1}\left(l_{1} l_{2}\right)\right] \\
& =\left[\left(l_{1} l_{2}\right) p_{1}\right]\left(g_{1}^{2} l_{1}\right)=g_{1}^{2}\left(\left[\left(l_{1} l_{2}\right) p_{1}\right] l_{1}\right)=g_{1}^{2} p_{2}, \text { where } p_{2}=\left[\left(l_{1} l_{2}\right) p_{1}\right] l_{1},
\end{aligned}
$$

therefore, $g_{1}=\left(\left(g_{1}^{2} p_{2}\right) g_{1}\right) g_{1}$, where $p_{2}=\left[\left(l_{1} l_{2}\right) p_{1}\right] l_{1}$ and $p_{1}=\left((t s) l_{1}\right) l_{2}$.
Now, consider

$$
\begin{aligned}
& \widetilde{\Im}_{\beta_{1} \circ *_{2}}\left(g_{1}\right)=\left(\left(\widetilde{\Im}_{\beta_{1}} \widetilde{\circ} \widetilde{\Im}_{\beta_{2}}\right)\left(g_{1}\right) \widetilde{V} \widetilde{\gamma_{1}}\right) \widetilde{\wedge} \widetilde{\delta_{1}} \\
& =\left(\left(\operatorname{rsup}_{g_{1}=p_{1} \circ p_{2}}\left\{\widetilde{\Im}_{\beta_{1}}\left(p_{1}\right) \widetilde{\wedge} \widetilde{\Im}_{\beta_{2}}\left(p_{2}\right)\right\}\right) \widetilde{\vee} \widetilde{\gamma_{1}}\right) \widetilde{\wedge} \widetilde{\delta_{1}} \\
& \succeq\left(\left\{\widetilde{\Im}_{\beta_{1}}\left(\left(g_{1}^{2} p_{2}\right) g_{1}\right) \widetilde{\wedge} \widetilde{\Im}_{\beta_{2}}\left(g_{1}\right)\right\} \widetilde{\vee} \widetilde{\gamma_{1}}\right) \widetilde{\wedge} \widetilde{\delta}_{1} \\
& \succeq \quad\left\{\left(\widetilde{\Im}_{\beta_{1}}\left(g_{1}^{2}\right) \widetilde{\vee} \widetilde{\gamma}_{1}\right) \widetilde{\wedge}\left(\widetilde{\Im}_{\beta_{2}}\left(g_{1}\right) \widetilde{\vee} \widetilde{\gamma_{1}}\right)\right\} \widetilde{\wedge} \widetilde{\delta}_{1} \\
& \succeq \quad\left(\left\{\left(\widetilde{\Im}_{\beta_{1}}\left(g_{1}\right) \widetilde{\wedge} \widetilde{\delta_{1}}\right) \widetilde{\wedge}\left(\widetilde{\Im}_{\beta_{2}}\left(g_{1}\right) \widetilde{\wedge} \widetilde{\delta_{1}}\right)\right\} \widetilde{\wedge} \widetilde{\delta_{1}}\right) \widetilde{\vee} \widetilde{\gamma}_{1} \\
& =\left(\left(\left(\widetilde{\Im}_{\beta_{1}}\left(g_{1}\right) \widetilde{\wedge} \widetilde{\Im}_{\beta_{2}}\left(g_{1}\right)\right) \widetilde{\vee} \widetilde{\gamma_{1}}\right) \widetilde{\wedge} \widetilde{\delta_{1}}\right. \\
& =\widetilde{\Im}_{\beta_{1}^{*}} \tilde{\wedge} \widetilde{\Im}_{\beta_{2}^{*}}\left(g_{1}\right),
\end{aligned}
$$

and on the other hand,

$$
\begin{aligned}
\hbar_{\beta_{1} \circ * \beta_{2}}\left(g_{1}\right) & =\left(\left(\hbar_{\beta_{1}} \circ \hbar_{\beta_{2}}\right)\left(g_{1}\right) \wedge \gamma_{2}\right) \vee \delta_{2} \\
& =\left(\left(\inf _{g_{1}=p_{1} p_{2}}\left\{\hbar_{\beta_{1}}\left(p_{1}\right) \vee \hbar_{\beta_{2}}\left(p_{2}\right)\right\}\right) \wedge \gamma_{2}\right) \vee \delta_{2} \\
& \leq\left\{\left(\hbar_{\beta_{1}}\left(\left(g_{1}^{2} p_{2}\right) g_{1}\right) \vee \hbar_{\beta_{2}}\left(g_{1}\right)\right) \wedge \gamma_{2}\right) \vee \delta_{2} \\
& \leq\left\{\left(\hbar_{\beta_{1}}\left(g_{1}^{2}\right) \wedge \gamma_{2}\right) \vee\left(\hbar_{\beta_{2}}\left(g_{1}\right) \wedge \gamma_{2}\right) \vee \delta_{2}\right. \\
& \leq\left(\hbar_{\beta_{1}}\left(g_{1}\right) \vee \delta_{2}\right) \vee\left(\hbar_{\beta_{2}}\left(g_{1}\right) \vee \delta_{2}\right) \wedge \gamma_{2} \\
& =\left(\left(\hbar_{\beta_{1}}\left(g_{1}\right) \vee \hbar_{\beta_{2}}\left(g_{1}\right)\right) \wedge \gamma_{2}\right) \vee \delta_{2} \\
& =\left(\left(\left(\hbar_{\beta_{1}} \vee \hbar_{\beta_{2}}\right)\left(g_{1}\right)\right) \wedge \gamma_{2}\right) \vee \delta_{2} \\
& =\left(\hbar_{\beta_{1}^{*}} \vee \hbar_{\beta_{2}^{*}}\right)\left(g_{1}\right) .
\end{aligned}
$$

Thus,
$\beta_{1} \circ * \beta_{2}\left(g_{1}\right)=\left\langle\widetilde{\Im}_{\beta_{1} \circ * \beta_{2}}\left(g_{1}\right) \succeq\left(\widetilde{\Im}_{\beta_{1}^{*}} \widetilde{\wedge} \widetilde{\Im}_{\beta_{2}^{*}}\right)\left(g_{1}\right), \hbar_{\beta_{1} \circ * \beta_{2}}\left(g_{1}\right) \leq\left(\hbar_{\beta_{1}^{*}} \vee \hbar_{\beta_{2}^{*}}\right)\left(g_{1}\right)\right\rangle \supseteq \beta_{1} \wedge^{*} \beta_{2}$.
$\beta_{1} \wedge^{*} \beta_{2} \subseteq \beta_{1} \circ^{*} \beta_{2}$ for all $\left(\epsilon_{\Gamma}, \in_{\Gamma} \vee \boldsymbol{q} \boldsymbol{\Delta}\right)$-cubic bi ideal $\beta_{1}=\left\langle\widetilde{\Im}_{\beta_{1}}, \hbar_{\beta_{1}}\right\rangle$ and $\left(\epsilon_{\Gamma}, \in_{\Gamma} \vee \boldsymbol{q} \boldsymbol{\Delta}\right)$-cubic quasi ideal $\beta_{2}=\left\langle\widetilde{\Im}_{\beta_{2}}, \hbar_{\beta_{2}}\right\rangle$ of S.
(ii) \Rightarrow (i)

Let R_{2} and R_{3} are the bi and quasi ideals of S with left identity respectively. Then, $\varkappa_{\Gamma}^{* \Delta} R_{2}$ and
$\varkappa_{\Gamma}^{* \Delta} R_{3}$ are $\left(\epsilon_{\Gamma}, \in_{\Gamma} \vee \boldsymbol{q} \boldsymbol{\Delta}\right)$-cubic bi and $\left(\epsilon_{\Gamma}, \in_{\Gamma} \vee \boldsymbol{q} \boldsymbol{\Delta}\right)$-cubic quasi ideals of S respectively. Then, by hypothesis

$$
\varkappa_{\Gamma}^{* \delta} R_{2} R_{3}=\varkappa_{\Gamma}^{\Delta} R_{2} \circ^{*} \varkappa_{\Gamma}^{\Delta} R_{3} \leq \varkappa_{\Gamma}^{\Delta} R_{2} \wedge^{*} \varkappa_{\Gamma}^{\Delta} R_{3}=\varkappa_{\Gamma}^{\Delta} R_{2} \cap R_{3} .
$$

Thus, $R_{2} R_{3} \subseteq R_{2} \cap R_{3}$. Hence S is intra-regular by Theorem 4.8.

5 Conclusion

In this paper we have given some characterizations of the intra-regular $\mathcal{A \mathcal { G }}$-groupoids by using the generalized cubic ideals. We will also characterize more classes of $\mathcal{A G}$-groupoids through the given generalized cubic ideals. In future we are aiming to provide more generalizations of such types of ideals.

Conflict of Interest The authors declares there is no conflict of interest regarding the publication of this article.

References

[1] M. Aslam, T. Aroob \& N. Yaqoob (2013). On cubic g-hyperideals in left almost gsemihypergroups. Annals of Fuzzy Mathematics and Informatics, 5(1), 169-182.
[2] K. T. Atanassov (1986). Intuitionistic fuzzy sets. Fuzzy Sets and system, 20(1), 87-96. https: //doi.org/10.1016/S0165-0114(86)80034-3.
[3] K. T. Atanassov (1994). New operations defined over the intuitionistic fuzzy sets. Fuzzy Sets and Systems, 61(2), 137-142. https://doi.org/10.1016/0165-0114(94)90229-1.
[4] P. Holgate (1992). Groupoids satisfying a simple invertive law. The Mathematics Student, 4(1), 101-106.
[5] Y. B. Jun, S. T. Jung \& M. S. Kim (2011). Cubic subgroups. Annals of Fuzzy Mathematics and Informatics, 2(1), 9-15.
[6] Y. B. Jun, C. S. Kim \& J. G. Kang (2011). Cubic q-ideals of bci-algebras. Annals of Fuzzy Mathematics and Informatics, 1(1), 25-34.
[7] Y. B. Jun, C. S. Kim \& M. S. Kang (2010). Cubic subalgebrasand ideals of bck/bci-algebras. Far East Journal of Mathematical Sciences, 44(2), 239-250.
[8] Y. B. Jun, C. S. Kim \& K. O. Yang (2012). Cubic sets. Annals of Fuzzy Mathematics and Informatics, 4(1), 83-98.
[9] Y. B. Jun, K. J. Lee \& M. S. Kang (2011). Cubic structures applied to ideals of bci-algebras. Computers and Mathematics with Applications, 62(9), 3334-3342. https://doi.org/10.1016/j. camwa.2011.08.042.
[10] M. A. Kazim \& M. D. Naseeruddin (1977). On almost semigroups. Portugaliae Mathematica, 36(1), 41-47.
[11] M. Khan, S. Anis \& K. P. Shum (2011). Characterizations of left regular ordered abelgrassmann groupoids. International Journal of Algebra, 5(11), 499-521.
[12] M. Khan, Y. B. Jun, M. Gulistan \& N. Yaqoob (2015). The generalized version of jun's cubic sets in semigroups. Journal of Intelligent and Fuzzy Systems, 28(2), 947-960. https://doi.org/ 10.3233/IFS-141377.
[13] X. L. Ma, J. Zhan, M. Khan, M. Gulistan \& N. Yaqoob (2018). Generalized cubic relations in h v-la-semigroups. Journal of Discrete Mathematical Sciences and Cryptography, 21(3), 607-630. https://doi.org/10.1080/09720529.2016.1191174.
[14] M. A. Malik \& M. Riaz (2011). G-subsets and g-orbits of under action of the modular group. Punjab University Journal of Mathematics, 43(1), 75-84.
[15] M. A. Malik \& M. Riaz (2012). Orbits of under the action of the modular group psl (2, z). University Politehnica of Bucharest Scientific Bulletin-series Applied Mathematics and Physics, 74(4), 109-116.
[16] V. Murali (2004). Fuzzy points of equivalent fuzzy subsets. Information Science, 158(1), 277288. https://doi.org/10.1016/j.ins.2003.07.008.
[17] Q. Mushtaq \& M. Iqbal (1991). Partial ordering and congruences on la-semigroups. Indian Journal of Pure and Applied Mathematics, 22(4), 331-336.
[18] Q. Mushtaq \& M. S. Kamran (1996). On left almost groups. Proceeding Pakistan Academy of Science, 33(1), 53-56.
[19] Q. Mushtaq \& M. Khan (2009). M-systems in la-semigroups. Southeast Asian Bulletian of Mathematics, 33(2), 321-327.
[20] Q. Mushtaq, M. Khan \& K. P. Shum (2013). Topological structure on la-semigroups. Bulletin of Malaysian Mathematical Science Society, 36(1), 901-906.
[21] Q. Mushtaq \& S. M. Yusuf (1978). La-semigroup. Aligarh Bulletin of Mathematics, 8(1), 65-70.
[22] Q. Mushtaq \& S. M. Yusuf (1979). On locally associative la-semigroups. Journal of Natural Sciences and Mathematics, 19(1), 57-62.
[23] P. Pao-Ming \& L. Ying-Ming (1980). Fuzzy topology. i. neighborhood structure of a fuzzy point and moore-smith convergence. Journal of Mathematical Analysis and Applications, 76(2), 571-599. https://doi.org/10.1016/0022-247X(80)90048-7.
[24] M. Riaz, B. Davvaz, A. Firdous \& A. Fakhar (2019). Novel concepts of soft rough set topology with applications. Journal of Intelligent and Fuzzy Systems, 36(4), 3579-3590. https://doi.org/ 10.3233/JIFS-181648.
[25] M. Riaz \& S. T. Tehrim (2019). Certain properties of bipolar fuzzy soft topology via qneighborhood. Punjab University Journal of Mathematics, 51(3), 113-131.
[26] M. Riaz \& S. T. Tehrim (2019). Cubic bipolar fuzzy ordered weighted geometric aggregation operators and their application using internal and external cubic bipolar fuzzy data. Computational and Applied Mathematics, 38(87), 1-25. https://doi.org/10.1007/s40314-019-0843-3.
[27] N. Yaqoob, S. M. Mostafa \& M. A. Ansari (2013). On cubic ku-ideals of ku-algebras. Hindawi Publishing Corporation, ISRN Algebra, 2013. https://doi.org/10.1155/2013/935905.
[28] Y. Yin \& J. Zhan (2012). Characterization of ordered semigroups in terms of fuzzy soft ideals. Malaysian Journal of Mathematical Sciences, 35(4), 997-1015.
[29] L. A. Zadeh (1965). Fuzzy sets. Information and Control, 8(3), 338-353. https://doi.org/10. 1016/S0019-9958(65)90241-X.

